Preview

Medical Visualization

Advanced search

Diffusion Kurtosis Imaging in the Assessment of Peritumoral Brain Edema in Glioblastomas and Brain Metastases

https://doi.org/10.24835/1607-0763-2017-4-97-112

Abstract

Aim: to explore the opportunities of application of diffusion
kurtosis imaging (DKI) for assessment and estimation of diffusion scalar metrics in different locations of peritumoral edema for extra- and intracerebral tumors and in contralateral normal tissue.

Materials and methods. 38 patients with supratentorial brain tumors were investigated: 24 (63%) patients with primarily revealed glioblastomas (GB) and 14 (37%) patients with solitary cancer brain metastasis (MTS). MRI was performed on 3.0 T MR-scanner (Signa HDxt, General Electric, USA) with the standard protocols for brain tumor and additional protocol for DKI. The standard protocol for brain tumor included: T1-, T2-weighted images, T2-FLAIR, DWI,  T1 with contrast enhancement. Diffusion kurtosis MRI based on SE  EPI with TR = 10000 ms, TE = 102 ms, FOV = 240 mm, isotropic voxel size 3 × 3 × 3 mm3, 60 noncoplanar diffusion directions. We  used three b-values: 0, 1000 and 2500 s/mm2. Аcquisition time was 22 min. Total acquisition time was near 40 min. This study was approved by Ethical committee of Burdenko National Scientific  and Practical Center for Neurosurgery. Parametric maps were  constructed for the following diffusion coefficients: mean (MK),  transverse / radial (RK), longitudinal / axial (AK) kurtozis; medium  (MD), transverse / radial (RD) and longitudinal / axial (AD) diffusion; fractional anisotropy (FA) and a bi-exponential diffusion model  coefficients: axonal water fractions (AWF), axial (AxEAD) and radial  (RadEAD) extra-axonal water diffusion and the water molecules  trajectory tortuosity index (TORT). Normative quantitative indicators  were obtained for the six regions of the peritumoral zone as they  moved away from the tumor (region 2) to the edema periphery  (regions 4–5), as well as in the normal brain on the contralateral  hemisphere (C/L) (zone 7). A comparative analysis of these  indicators was conducted for cases with GB and MTS. DKI scalar metrics were estimated using Explore DTI (http://www.exploredti.com/).

Results. Anatomic MRI (T1 without/with contrast enhancement) for  all cases with GB and MTS visualized a contrast enhancement tumor.  The peritumoral edema, spreading mainly over the brain white  matter, was well visualized on T2-FLAIR. Diffusion kurtosis  coefficients decreased in the near peritumoral edema (regions 2–3)  and a gradually increased to the edema periphery (regions 5–6). In Region 2, MK in both GB and MTS groups were MKGB(2) = 0.637 ±  0.140 and MKMTS(2) = 0.550 ± 0.046; RK in this region were  RKGB(2) = 0.690 ± 0.154 and RKMTS (2) = 0.584 ± 0.051.  Differences both MK and RK coefficients in patients with GB and MTS of region 2 were significant (p < 0.001). There were no differences in AK values for GB and MTS in region 2 (p > 0.05), but in regions 3  and 4 differences were observed (p < 0.01). The minimum value of  AK in the central edema (regions 3–4) was AKMTS(3–4) = 0.433 ± 0.063 in patients with MTS. The values of MK and RK on the  contralateral side in patients with MTS were significantly higher than  in the GB group (p < 0.02); MKC/LMTC = 0.954 ± 0.140, RKC/LMTC  = 1.257 ± 0.308 and MKC/LGB = 0.829 ± 0.146, RKc/LGB = 0.989  ± 0.282. There was no significant difference for contralateral AK between the groups.

Conclusions. We found that DKI scalar metrics are the sensitive  tumor biomarkers. It allows us to perform a robust differentiation  between the infiltrating GB tumor and purely vasogenic edema of  МТS. The obtained results will allow further differential diagnosis of  extra- and intracerebral tumors and can be used to plan surgical /  radiosurgical treatment for brain tumors.

About the Authors

A. M. Turkin
N.N. Burdenko National Scientific and Practical Center for Neurosurgery
Russian Federation

Competing Interests:

cand. of med. sci., senior researcher of Neuroradiology department of N.N. Burdenko National Scientific and Practical Center for Neurosurgery, Moscow

125047 Moscow, 4-th Tverskaya-Yamskaya str., 16, Burdenko National Scientific and Practical Center for Neurosurgery, Neuroradiology department. Phone: +7-903-737-01-09



E. L. Pogosbekyan
N.N. Burdenko National Scientific and Practical Center for Neurosurgery
Russian Federation

Competing Interests:

med. physicist of Neuroradiology department of N.N. Burdenko National Scientific and Practical Center for Neurosurgery, Moscow



A. C. Tonoyan
N.N. Burdenko National Scientific and Practical Center for Neurosurgery
Russian Federation

Competing Interests:

aspirant of Neuroradiology department of N.N. Burdenko National Scientific and Practical Center for Neurosurgery, Moscow



E. I. Shults
N.N. Burdenko National Scientific and Practical Center for Neurosurgery
Russian Federation

Competing Interests:

med. doctor of Neuroradiology department of N.N. Burdenko National Scientific and Practical Center for Neurosurgery, Moscow



I. I. Maximov
TU Dortmund University
Germany

Competing Interests:

cand. of phys.-math. sci., senior researcher of TU Dortmund University, Dortmund, Germany



M. B. Dolgushin
N.N. Blokhin Russian Cancer Research Center
Russian Federation

Competing Interests: doct. of med. sci., Head of PET department of N.N. Blokhin RCRC, Moscow


N. V. Khachanova
N.I. Pirogov Russian National Research Medical University
Russian Federation

Competing Interests: cand. of med. sci., Assistant of Neurology and Neurosurgery Department of N.I. Pirogov Russian National Research Medical University, Moscow


L. M. Fadeeva
N.N. Burdenko National Scientific and Practical Center for Neurosurgery
Russian Federation

Competing Interests: lead. engineer of Neuroradiology department of N.N. Burdenko National Scientific and Practical Center for Neurosurgery


T. V. Melnikova-Pitskhelauri
N.N. Burdenko National Scientific and Practical Center for Neurosurgery
Russian Federation

Competing Interests:

cand. of biol. sci., lead. engineer of Neuroradiology department of N.N. Burdenko National Scientific and Practical Center for Neurosurgery, Moscow



D. I. Pitskhelauri
N.N. Burdenko National Scientific and Practical Center for Neurosurgery
Russian Federation

Competing Interests:

doct. of med. sci., professor, Head of Neurooncology department of N.N. Burdenko National Scientific and Practical Center for Neurosurgery, Moscow



I. N. Pronin
N.N. Burdenko National Scientific and Practical Center for Neurosurgery
Russian Federation

Competing Interests:

doct. of med. sci., professor, Full Мember of the Russian Academy of Sciences, Head of Neuroradiology department, Deputy Director of N.N. Burdenko National Scientific and Practical Center for Neurosurgery, Moscow



V. N. Kornienko
N.N. Burdenko National Scientific and Practical Center for Neurosurgery
Russian Federation

Competing Interests:

doct. of med. sci., professor, Full Мember of the Russian Academy of Sciences, Scie. Сonsultant of Neuroradiology department of N.N. Burdenko National Scientific and Practical Center for Neurosurgery, Moscow



References

1. Stadlbauer A., Ganslandt O., Buslei R., Hammen T., Gruber S., Moser E., Buchfelder M., Salomonowitz E., Nimsky C. Gliomas: histopathologic evaluation of changes in directionality and magnitude of water diffusion at diffusion-tensor MR imaging. Radiologiya. 2006; 240 (3): 803–810. DOI.org/10.1148/radiol.2403050937.

2. Kornienko V.N., Pronin I.N., Fadeeva L.M., Zakharova N.E., Dolgushin M.B., Podoprigora A.E. Diffusion-tensor magnetic resonance imaging and tractography. Annaly Clinicheskoy i ehksperimentalnoy nevrologii. 2008; 2 (1): 32–40. (In Russian)

3. Van Westen D., Latt J., Englund E., Brockstedt S., Larsson E.M. Tumor Extension in High-Grade Gliomas Assessed with Diffusion Magnetic Resonance Imaging: Values and Lesion-to-Brain Ratios of Apparent Diffusion Coefficient and Fractional Anisotropy. Acta Radiol. 2006; 3: 311–319. DOI.org/10.1080/02841850500539058.

4. Turkin A.M., Dolgushin M.B., Podoprigora A.E., Serkov S.V., Takush S.V., Fadeeva L.M., Kornienko V.N. Cerebral edema – the possibility of magnetic resonance imaging. Vestnik rentgenologii i radiologii. 2010; 1: 4–11. (in Russian).

5. Sternberg E., Lipton M., Burns J. Utility of Diffusion Tensor Imaging in Evaluation of the Peritumoral Region in Patients with Primary and Metastatic Brain Tumors. Am. J. Neuroradiol. 2014; 35: 349–344. DOI.org/10.3174/ajnr.A3702.

6. Kinoshita M., Hashimoto N., Goto T., Kagawa N., Kishima H., Izumoto S., Tanaka H., Fujita N., Yoshimine T. Fractional anisotropy and tumor cell density of the tumor core show positive correlation in diffusiion tensor magnetic resonance imaging of malignant brain tumors. Neuroimage. 2008; 43 (1): 29–35. DOI.org/10.1016/j.neuroimage.2008.06.041.

7. Min Z.-G., Niu C.N., Rana N., Ji H.-m., Zhang M. Differentiation of pure vasogenic edema and tumor-infiltrated edema in patients with peritumoralededma by analizyng the relashhionship of axial and radial diffusivities on 3.0 T MRI. Clin. Neurol. Neurosurg. 2013; 115: 1366–1370. DOI.org/10.1016/j.clineuro.2012.12.031.

8. Lemee J.-M., Clavreul A., Aubry M., Com E., de Tayrac M., Eliat P.-A., Henry C., Rousseau A., Mosser J., Menei P. Characterizing the peritumoral brain zone in glioblastoma: a multidisciolinary analysis. J. Neurooncol. 2015; 122 (1): 53–61. DOI:10.1007/s11060-014-1695-8.

9. Shi L., Zang H., Meng Y.-F., Su J.S., Shao G.L. Diffusion Tensor Magnetic Resonance Imaging in Ring-Enhancing Cerebral Lesions. Appl. Magn. Reson. 2010; 38: 431–442. DOI:10.1007/s00723-010-0137-9.

10. Dolgushin M.B. Neuroimaging the malignant tumors metastases in the brain and evaluating the effectiveness of their treatment: Diss. … doct. of med. sci. Moscow, 2013. 47 p. (In Russian)

11. Kinoshita M., Goto T., Okita Y., Kagawa N., Kishima H., Hashimoto N., Yoshimine T. Diffusion tensor-based tumor infiltration index cannot discriminate vasogenic edema from tumor-infiltrated edema. J. Neurooncol. 2010; 96: 409–415. DOI:10.1007/s11060-009-9979-0.

12. Hou J., Osterlund T., Liu Z., Petranovic D., Nielsen J. Heat shock response improves heterologous protein secretion in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2013; 97 (8): 3559–3568. DOI:10.1007/s00253-012-4596-9.

13. Horvath A., Perlaki G., Tóth A., Orsi G., Nagu S., Doczi T., Horvath Z., Bogner P. Biexponenential Diffusion Altetations in the Normal- Appearing White Matter of Glioma Patients Might Indicate the Presence of Global Vasogenic Edema. JMRN. 2016; 44 (3): 633–641. DOI: 10.1002/jmri.25202.

14. Pronin I.N, Kornienko V.N., Golanov A.V., Korshunov A.G., Serkov S.V., Eriksen M.R. Postoperative assessment of the radicality removal of glioblastomas of the cerebral hemispheres. Voprosy nejrohirurgii. 2003; 4: 10–15. (In Russian)

15. Lope-Piedrafita S., Garcia-Martin M., Galons J., Gillies R., Trouard T.P. Longitudinal diffusion tensor imaging in a rat brain glioma model. NMR Biomed. 2008; 21: 799–808. DOI: 10.1002/nbm.1256.

16. Lu L., Shepard J., Hall F., Shaham Y. Effect of environmental stressors on opiate and psychostimulant reinforcement, reinstatement and discrimination in rats: a review. Neurosci. Biobehav. Rev. 2003; 27: 457–491. DOI.org/10.1016/S0149-7634(03)00073-3.

17. Kornienko V.N., Pronin I.N., Fadeeva L.M., Golanov A.V., Rodionov P.V., Tsherbanina V.Yu. Diffusion-weighted images in the diagnosis of brain gliomas. Medical Visualization. 2000; 1: 18–25. (In Russian).

18. Tropine A., Vucurevic G., Delani P., Boor S., Hopf N., Bohl J., Stoeter P. Contribution of diffusion tensor imaging to delineation of gliomas and glioblastomas. J. Magn. Reson. Imaging. 2004; 20: 905–912. DOI: 10.1002/jmri.20217.

19. Dolgushin M.B., Pronin I.N., Kornienko V.N. Diffusionweighted magnetic resonance imaging in the diagnosis of solitary metastatic brain tumors: Materialyi nauchnoprakticheskoy konferentsii “Aktualnyie problemyi klinicheskoy onkologii.” Glavnyiy klinicheskiy gospital im. Akad. N.N. Burdenko. Moscow, December, 2005: 26. (In Russian)

20. Morita K.-I., Matsuzawa H., Fujii Y., Tanaka R., Kwee I.L., Nakada T. Diffusion tensor analysis of peritumoral edema using lambda chart analysis indicative of the heterogeneity of the microstructure within edema. J. Neurosurg. 2005; 102: 336–341.

21. Deng Z.,Yan Y., Zhong D., Yang G., Tang W., Lu F., Xie B., Liu B. Quantitative analysis of glioma cell invasion by diffusion tensor imaging. J. Clin. Neuroscien. 2010; 17: 1530–1536. DOI.org/10.1016/j.jocn.2010.03.060.

22. Fieremans E., Jensen J., Helpern J. White matter characterization with diffusional kurtosis imaging. Neuroimage. 2011; 58: 177–188. DOI.org/10.1016/j.neuroimage.2011.06.006.

23. Van Cauter S., De Keyzer F., Sima D. M., Sava A.C., D’Arco F., Veraart J., Peeters R.R., Leemans A., Van Gool S., Wilms G., Demaerel P., Van Huffel S., Sunaert S., Himmelreich U. Integrating diffusion kurtosis imaging, dynamic susceptibility- weighted contrast-enhanced MRI, and short echo time chemical shift imaging for grading gliomas. Neuro Oncol. 2014; 16: 1010–1021. DOI:10.1093/neuonc/not304.

24. Tan Y., Zhang H., Zhao R.-F., Wang X-C., Qin J.-B., Wu X.-F. Comparison of the values of MRI diffusion kurtosis imaging and diffusion tensor imaging in cerebral astrocytoma grading and their association with aquaporin-4. Neurol. India. 2016; 64 (2): 265–272. DOI: 10.4103/0028-3886.177621.

25. Tonoyan A.S., Pronin I.N., Pitskhelauri D.I., Khachanova N.V., Fadeeva L.M., Pogosbekyan E.L., Zakharova N.E., Potapov A.A., Shults E.I., Bykanov A.E., Yakovlenko Yu.G., Kornienko V.N. Diffusion-Kurtosis MRI in the diagnosis of gliomas malignancy of the brain. Medical Visualization. 2015; 1: 7–18. (In Russian)

26. Tonoyan A.S.., Pronin I.N., Pitskhelauri D.I., Zakha rova N.E., Khachanova N.V., Fadeeva L.M., Pogos bekyan E.L., Potapov A.A., Shults E.I., Ale xand rova E.V.,Gavrilov A.G., Kornienko V.N. Diffusion-kurtosis magnetic resonance imaging: a new method for characterizing the structural organization of the brain substance (preliminary results in healthy volunteers). Radiologiya–Praktika. 2015; 1 (49): 57–67. (In Russian)

27. Hui E., Fieremans E., Jensen J., Tabesh A., Feng W., Bonilha L., Spampinato M.V., Adams R., Helpern J.A. Stroke Assessment with Diffusional Kurtosis Imaging. Stroke. 2012; 43 (11): 2968–2973. DOI.org/10.1161/STROKEAHA.112.657742.

28. Zhuo J., Xu S., Proctor J.L., Mullins R.J., Simon J.Z., Fiskum G., Gullapalli R.P. Diffusion kurtosis as an in vivo imaging marker for reactive astrogliosis in traumatic brain injury. Neuro Imag. 2012; 59: 467–477. DOI.org/10.1016/j.neuroimage.2011.07.050.

29. Pogosbekyan E.L., Tonoyan A.S., Fadeeva L.M., Pronin I.N., Kornienko V.N. Measurement of diffusion kurtosis in various anatomical structures of the brain. Materialyi II Natsionalnogo S'ezda obschestva neyroradiologov. Moscow, 4–5 July 2014: 28. (In Russian)

30. Rebrova O.Yu. Statistical analysis of medical data. Application of the Statistica software package. М.: Media Sphere, 2002. 312 p. (In Russian)

31. Jensen J., Helpern J. MRI quantification of non-Gaussian water diffusion by kurtosis analysis. NMR Biomed. 2010; 23: 698–710. DOI: 10.1002/nbm.1518.

32. Van Cauter S., Veraart J., Sijbers J., Ronald R. Peeters R.R., Himmelreic U., De Keyze F., Van Gool S.W., Van Calenbergh F., De Vleeschouwer S., Van Hecke W., Sunaert S. Gliomas: dinffusion kurtosis MR imaging in grading. Radiologiya. 2012; 263 (2): 492–501. DOI.org/10.1148/radiol.12110927.

33. Zakharova N.E., Kornienko V.N., Potapov A.F.,Pronin I.N. Neuroimaging of structural and hemodynamic disorders in brain trauma. M.: Novoe vremya, 2013. 160 p. (In Russian)

34. Lemercier P., Maya S.P., Patrie J.T., Flors L., Leiva-Salinas C. Gradient of Apparent Diffusion Coefficient Values in Peritumoral Edema Helps in Differentiation of Glioblastoma From Solitary Metastatic Lesions. Am. J. Roentgenol. 2014; 203 (1): 163–169. DOI:10.2214/AJR.13.1118.


Review

For citations:


Turkin A.M., Pogosbekyan E.L., Tonoyan A.C., Shults E.I., Maximov I.I., Dolgushin M.B., Khachanova N.V., Fadeeva L.M., Melnikova-Pitskhelauri T.V., Pitskhelauri D.I., Pronin I.N., Kornienko V.N. Diffusion Kurtosis Imaging in the Assessment of Peritumoral Brain Edema in Glioblastomas and Brain Metastases. Medical Visualization. 2017;(4):97-112. (In Russ.) https://doi.org/10.24835/1607-0763-2017-4-97-112

Views: 2136


ISSN 1607-0763 (Print)
ISSN 2408-9516 (Online)