Preview

Medical Visualization

Advanced search

Postmortem Characteristics of Lung Hypoplasia at Diaphragmatic Hernia: MRI – Pathomorphological Comparisons

https://doi.org/10.24835/1607-0763-2017-4-132-142

Abstract

Purpose: the study of postmortem MRI possibilities for the diagnosis of lung hypoplasia in congenital diaphragmatic hernia.

Materials and methods. A comparison of the results of postmortem MRI study and data of pathoanatomical autopsy of 23 newborns was performed. In group I, the bodies of 10 deceased newborns with congenital diaphragmatic hernia without operative intervention were examined. In group II – the bodies of 7 newborns who died after surgery for congenital diaphragmatic hernia. Group III (control) included 6 bodies of newborns without diaphragmatic hernia and signs of lung hypoplasia. Before the autopsy, an MRI study was performed on a 3T Magnetom Verio device (Siemens, Germany) in standard T1 and T2 modes. The volumes of the lungs and chest cavity were calculated in the analysis of the tomograms data and their 3D reconstruction. The stage of the lung development and number of radial alveoli were identified at the microscopic study of histological preparations.

Results. As a result of the postmortem MRI study, it was established that the observations of group I are characterized by minimal lung volumes. The mean lung volume on the side of the diaphragmatic hernia was 4.1 times less than the contralateral lung (p < 0.01), and the mean values of the volume of both lungs were 4.6 times less than the corresponding values of the control group (p < 0.01) . The average value of the specific volume of the lungs in newborns who died as a result of congenital diaphragmatic hernia (group I) was 8.8%, which is 4.2 times less than the control group (p < 0.01) and was accompanied by histological signs of hypoplasia. The operation in Group II observations led to an increase in lung size. However, the specific volume of the lungs in this group remained by 18.6% less than the control group, and on histological specimens there were signs of lung hypoplasia.

Conclusion. The postmortem MRI of dead newborns allows for an objective quantification of lung volumes and verifies the presence of hypoplasia. This helps to clarify the pathogenesis and determine the immediate cause of death. Indices of specific lung volume relative to the chest cavity of less than 20% indicate lung hypoplasia as the immediate cause of death of the newborn.

About the Authors

U. N. Tumanova
“Research Center for Obstetrics, Gynecology and Perinatology” Ministry of Healthcare of the Russian Federation
Russian Federation

Competing Interests:

scientific researcher, Department of Morbid Anatomy of Research Center of Obstetrics, Gynecology, and Perinatology, Russian Ministry of Healthcare, Moscow

Academika Oparina str., 4, Moscow, Russia, 117997. Research Center of Obstetrics, Gynecology, and Perinatology. Phone: +7-(495)-5314444 (24-44)



V. M. Lyapin
“Research Center for Obstetrics, Gynecology and Perinatology” Ministry of Healthcare of the Russian Federation
Russian Federation

Competing Interests:

pathologist, Department of Morbid Anatomy of Research Center of Obstetrics, Gynecology, and Perinatology, Russian Ministry of Healthcare, Moscow



A. A. Burov
“Research Center for Obstetrics, Gynecology and Perinatology” Ministry of Healthcare of the Russian Federation
Russian Federation

Competing Interests:

Head on the clinical work of the Department of Neonatal Surgery of Research Center of Obstetrics, Gynecology, and Perinatology, Russian Ministry of Healthcare, Moscow



A. I. Shchegolev
“Research Center for Obstetrics, Gynecology and Perinatology” Ministry of Healthcare of the Russian Federation
Russian Federation

Competing Interests:

doct. of med. sci., professor, Head of Department of Morbid Anatomy of Research Center of Obstetrics, Gynecology, and Perinatology, Russian Ministry of Healthcare, Moscow



D. N. Degtyarev
“Research Center for Obstetrics, Gynecology and Perinatology” Ministry of Healthcare of the Russian Federation
Russian Federation

Competing Interests:

doct. of med. sci., professor, Deputy Director for Scientific Work of Research Center of Obstetrics, Gynecology, and Perinatology, Russian Ministry of Healthcare, Moscow



References

1. Wenstrom K.D., Weiner C.P., Janson J.W. A five-year statewide experience with congenital diaphragmatic hernia. Am. J. Obstet Gynecol. 1991; 165: 838–842.

2. Langham M.R.J., Kays D.W., Ledbetter D.J., Frentzen B., Sanford L.L., Richards D.S. Congenital diaphragmatic hernia. Epidemiology and outcome. Clin. Perinatol. 1996; 23: 671–688.

3. Neville H.L., Jaksic T., Wilson J.M., Lally P.A., Hardin W.D. Jr., Hirschl R.B., Lally K.P. Bilateral congenital diaphragmatic hernia. J. Pediatr. Surg. 2003; 38: 522–524. DOI: 10.1053/jpsu.2003.50092.

4. Jeanty C., Nien J.K., Espinoza J., Kusanovic J.P., Gonçalves L.F., Qureshi F., Jacques S., Lee W., Romero R. Pleural and pericardial effusion: a potential ultrasonographic marker for the prenatal differential diagnosis between congenital diaphragmatic eventration and congenital diaphragmatic hernia. Ultrasound Obstet. Gynecol. 2007; 29: 378–387. DOI: 10.1002/uog.3958.

5. Keijzer R., Puri P. Congenital diaphragmatic hernia. Semin. Pediatr. Surg. 2010; 19: 180–185. DOI: 10.1053/j.sempedsurg.2010.03.001

6. Shchegolev A.I., Tumanova U.N., Lyapin V.M. Pulmonary hypoplasia: причины развития и pathological finding. Mezhdunarodniy zhurnal prikladnykh i fundamentalnykh issledovaniy. 2017; 4 (3): 530–534. (In Russian)

7. Gilbert-Barness E., Spicer D.E., Steffensen T.S. Handbook of Pediatric Autopsy Pathology. New York: Springer Science + Business Media, 2014.

8. Askenazi S.S., Perlman M. Pulmonary hypoplasia: lung weight and radial alveolar count as criteria of diagnosis. Arch. Dis. Child. 1979; 54: 614–618.

9. Wigglesworth J.S., Desai R., Guerrini P. Fetal lung hypoplasia: biochemical and structural variations and their possible significance. Arch. Dis. Child. 1981; 56: 606-615

10. Emery J.L., Mithal A. The number of alveoli in the terminal respiratory unit of man during late intrauterine life and childhood. Arch. Dis. Child. 1960; 35: 544–547.

11. Doné E., Gucciardo L., Mieghem T.V., Jani J., Cannie M., Van Schoubroeck D., Devlieger R., Catte L.D., Klaritsch P., Mayer S., Beck V., Debeer A., Gratacos E., Nicolaides K., Deprest J. Prenatal diagnosis, prediction of outcome and in utero therapy of isolated congenital diaphragmatic hernia. Prenat. Diagn. 2008; 28: 581– 591. DOI: 10.1002/pd.2033.

12. Gucciardo L., Deprest J., Doné E., Van Mieghem T., Van de Velde M., Gratacos E., Jani J., Peralta F., Nicolaides K. Prediction of outcome in isolated congenital diaphragmatic hernia and its consequences for fetal therapy. Best Pract. Res. Clin. Obstet. Gynecol. 2008; 22 (1): 123–138. DOI: 10.1016/j.bpobgyn.2007.08.006.

13. Avrelkina E.V., Peretyatko L.P. Gerasimova L.I. Criteria for primary/secondary pulmonary hypoplasia when the false left-sided congenital diaphragmatic hernia. Sovremennye problemy nauki i obrazovanija. 2014; 4: 314. (in Russian)

14. Galambos C., Demello D.E. Regulation of alveologenesis: clinical implications of impaired growth. Pathology. 2008; 40: 124–140. DOI: 10.1080/00313020701818981.

15. Demidov V.N., Mashinets N.V., Podurovskaya Yu.L., Burov A.A. Fetal congenital diaphragmatic hernia: ultrasound diagnosis possibilities and prediction of postnatal outcome. Akusherstvo i ginekologiya. 2014; 4: 38–45. (In Russian)

16. Gallot D., Boda C., Ughetto S., Perthus I., Robert-Gnansia E., Francannet C., Laurichesse-Delmas H., Jani J., Coste K., Deprest J., Labbe A., Sapin V., Lemery D. Prenatal detection and outcome of congenital diaphrag matic hernia: a French registry-based study. Ultrasound Obstet. Gynecol. 2007; 29: 276–283. DOI: 10.1002/uog.3863.

17. Mashinets N.V. Fetal diaphragmatic hernia: Diagnosis, treatment, postnatal outcomes. Akusherstvo i ginekologiya. 2016; 2: 20–27. (In Russian) DOI: http://dx.doi.org/10.18565/aig.2016.2.20-26.

18. Vintzileos A.M., Campbell W.A., Rodis J.F., Nochimson D.J., Pinette M.G., Petrikovsky B.M. Comparison of six different ultrasonographic methods for predicting lethal fetal pulmonary hypoplasia. Am. J. Obstet. Gynecol. 1989; 162: 606–612.

19. Peralta C.F., Cavoretto P., Csapo B., Vandecruys H., Nicolaides K.H. Assessment of lung area in normal fetuses at 12–32 weeks. Ultrasound Obstet. Gynecol. 2005; 26: 718–724. DOI: 10.1002/uog.2651.

20. Yoshimura S., Masuzaki H., Gotoh H., Fukuda H., Ishimaru T. Ultrasonographic prediction of lethal pulmonary hypoplasia: comparison of eight different ultrasonographic parameters. Am. J. Obstet. Gynecol. 1996; 175: 477–483.

21. Metkus A.P., Filly R.A., Stringer M.D., Harrison M.R., Adzick N.S. Sonographic predictors of survival in fetal diaphragmatic hernia. J. Pediatr. Surg. 1996; 31: 148–151.

22. Jani J., Keller R.L., Benachi A., Nicolaides K.H., Favre R., Gratacos E., Laudy J., Eisenberg V., Eggink A., Vaast P., Deprest J., Antenatal-CDH-Registry Group. Prenatal prediction of survival in isolated left-sided diaphragmatic hernia. Ultrasound Obstet. Gynecol. 2006; 27: 18–22. DOI: 10.1002/uog.2688.

23. Jani J.C., Peralta C.F.A., Nicolaides K.H. Lung-to-head ratio to unify the technique. Ultrasound Obstet. Gynecol. 2012; 39: 2-6. DOI: 10.1002/uog.11065.

24. Doné E., Gucciardo L., Mieghem T.V., Jani J., Cannie M., Van Schoubroeck D., Devlieger R., Catte L.D., Klaritsch P., Mayer S., Beck V., Debeer A., Gratacos E., Nicolaides K., Deprest J. Prenatal diagnosis, prediction of outcome and in utero therapy of isolated congenital diaphragmatic hernia. Prenat. Diagn. 2008; 28: 581– 591. DOI: 10.1002/pd.2033.

25. Kasprian G., Balassy C., Brugger P.C., Prayer D. MRI of normal and pathological fetal lung development. Eur. J. Radiol. 2006; 57: 261–270. DOI: 10.1016/j.ejrad.2005.11.031.

26. Triebwasser J.E., Treadwell M.C. Prenatal prediction of pulmonary hypoplasia. Semin. Fetal. Neonatal Med. 2017; 15. DOI: 10.1016/j.siny.2017.03.001.

27. Tanigaki S., Miyakoshi K., Tanaka M., Hattori Y., Matsumoto T., Ueno K., Uehara K., Nishimura O., Minegishi K., Ishimoto H., Shinmoto H., Ikeda K., Yoshimura Y. Pulmonary hypoplasia: prediction with use of ratio of MR imaging–measured fetal lung volume to US-estimated fetal body weight. Radiology. 2004; 232: 767–772. DOI: 10.1148/radiol.2323030359.

28. Jani J., Cannie M., Sonigo P., Robert Y., Moreno O., Benachi A., Vaast P., Gratacos E., Nicolaides K.H., Deprest J. Value of prenatal magnetic resonance imaging in the prediction of postnatal outcome in fetuses with diaphragmatic hernia. Ultrasound Obstet. Gynecol. 2008; 32: 793–799. DOI: 10.1002/uog.6234.

29. Thayyil S., Sebire N.J., Chitty L.S., Wade A., Chong W., Olsen O., Gunny R.S., Offiah A.C., Owens C.M., Saunders D.E., Scott R.J., Jones R., Norman W., Addison S., Bainbridge A., Cady E.B., Vita E.D., Robertson N.J., Taylor A.M., MARIAS collaborative group. Post-mortem MRI versus conventional autopsy in fetuses and children: a prospective validation study. Lancet. 2013; 382: 223–233. DOI: 10.1016/S0140-6736(13)60134-8.

30. Tumanova U.N., Shchegolev A.I. Postmortem magnetic resonance tomography of fetuses and newborns. Medical Visualization. 2015; 5: 128–136. (in Russian)

31. Tumanova U.N., Shchegolev A.I. Possibilities and limitations of virutal autopsy in neonatology. REJR. 2017; 1: 20–33. DOI:10.21569/2222-7415-2017-7-1-20-33. (In Russian)

32. Tumanova U.N., Bychenko V.G., Liapin V.M., Voevodin S.M., Shchegolev A.I. Congenital diaphragmatic hernia in a newborn: MRI – pathomorphological comparisons. Medical Visualization. 2014; 4: 72–83. (In Russian)

33. Arthurs O.J., Thayyil S., Olsen O.E., Addison S., Wade A., Jones R., Norman W., Scott R.J., Robertson N.J., Taylor A.M., Chitty L.S., Sebire N.J., Owens C.M. Magnetic Resonance Imaging Autopsy Study (MaRIAS) Collaborative Group. Diagnostic accuracy of post-mortem MRI for thoracic abnormalities in fetuses and children. Eur. Radiol. 2014; 24: 2876–2884. DOI: 10.1007/s00330-014-3313-8.

34. Tumanova U., Lyapin V., Bychenko V.G., Shchegolev A.I., Sukhikh G.T. Postmortem magnetic resonance imaging in the diagnosis of congenital pneumonia. Vestnik Rossijskogo gosudarstvennogo medicinskogo universiteta. 2016; 4: 48–55. (In Russian)

35. Tumanova U.N., Lyapin V.M., Shchegolev A.I., Sukhikh G.T. The possibility of postmortem MRI in the diagnosis of congenital pneumonia. Virchows Arch. 2016; 469 (S1): S183.

36. Tumanova U., Lyapin V., Bychenko V.G., Voevodin S.M., Shchegolev A.I. Method of postmortem diagnosis of congenital pneumonia in a newborn. Patent RUS 2609462 16.02.2016. (In Russian)

37. Thayyil S., Schievanoa S., Robertson N.J., Jones R., Chitty L.S., Sebire N.J., Taylor A.M., MaRIAS (Magnetic Resonance Imaging Autopsy Study) Collaborative group. A semi-automated method for non-invasive internal organ weight estimation by post- mortem magnetic resonance imaging in fetuses, newborns and children. Eur. J. Radiol. 2009; 72: 321–326. DOI: 10.1016/j.ejrad.2008.07.013.


Review

For citations:


Tumanova U.N., Lyapin V.M., Burov A.A., Shchegolev A.I., Degtyarev D.N. Postmortem Characteristics of Lung Hypoplasia at Diaphragmatic Hernia: MRI – Pathomorphological Comparisons. Medical Visualization. 2017;(4):132-142. (In Russ.) https://doi.org/10.24835/1607-0763-2017-4-132-142

Views: 1318


ISSN 1607-0763 (Print)
ISSN 2408-9516 (Online)