Preview

Medical Visualization

Advanced search

Dynamic Contrast Enhanced MRI in Glioma Diagnosis

https://doi.org/10.24835/1607-0763-2017-4-88-96

Abstract

The aim: to examine the possibility of using dynamic contrast  enhanced magnetic resonance imaging (DCE MRI) in clarifying the  diagnosis of glial brain tumors and the differentiation between them  on the basis of the malignancy degree. In this regard, the authors  evaluated the effectiveness of perfusion parameters (Ktrans, Kep, Ve and iAUC).

Materials and methods. The study included examination of 54  patients with an established presence of brain glial tumors. Glioma  Grade I–II diagnosed in 13 (24.1%) and glioma Grade III–IV in 41  (75.9%) cases. Morphological verification of the diagnosis obtained  as a result of either surgical removal of the tumor or stereotactic biopsy was achieved in 31 (57.4%) patients: glial tumors Grade I–II  identified in 6 (19.4%), and glioma Grade III–IV – 25 (80.6%) cases.

 

Results. According to DCE increasing of the malignancy degree of  glial tumors is followed by increasing of all perfusion parameters:  thus, the lowest values of Ktrans, Kep, Ve and iAUC were identified  in low grade gliomas (0.026 min−1, 0.845 min−1, 0.024 and 1.757,  respectively), the highest in gliomas Grade III–IV (0.052 min−1  1.083 min−1, 0.06 and 2.694, respectively). The most informative parameters with sensi tivity 90% and specificity 100% in the  differential diagnosis of gliomas Grade I-II and Grade III-IV are  Ktrans (cut-off = 0.16 min−1) and Ve (cut-off = 0.13).

Conclusion. DCE MRI can be used in differential diagnosis of glial brain tumors of different malignancy grade.

About the Authors

E. A. Nechipay
N.N. Blokhin National Medical Research Center of Oncology
Russian Federation

Competing Interests:

PhD-student of Division of Diagnostic Radiology and Interventional Radiology of N.N. Blokhin NMRCO, Moscow

115478, Moscow, Kashirskoe shosse, 23, N.N. Blokhin NMRCO. Phone: 8 (967) 121-80-50



M. B. Dolgushin
N.N. Blokhin National Medical Research Center of Oncology
Russian Federation

Competing Interests: doct. of med. sci., head of PET department of N.N. Blokhin NMRCO, Moscow


A. I. Pronin
N.N. Blokhin National Medical Research Center of Oncology
Russian Federation

Competing Interests:

reseach fellow of PET/CT department of N.N. Blokhin NMRCO, Moscow



E. A. Kobyakova
N.N. Blokhin National Medical Research Center of Oncology
Russian Federation

Competing Interests:

medical doctor of Division of Diagnostic Radiology and Interventional Radiology of N.N. Blokhin NMRCO, Moscow



L. M. Fadeeva
N.N. Burdenko National Medical Research Center of Neurosurgery
Russian Federation

Competing Interests:

engineer of Radiology and surgery methods of diagnostic and treatment Department of N.N. Burdenko NMRCO, Moscow



References

1. Pavelka M., Roth J. Funktionelle Ultrastruktur. Verlag Springer, 2009: 234–235.

2. Leenders W., Kusters B., Pikkemaat J., Wesseling P., Ruiter D., Heerschap A., Barentsz J., de Waal R.M. Vascular endothelial growth factor-A determines detectability of experimental melanoma brain metastasis in GD-DTPAenhanced MRI. Int. J. Cancer. 2003; 105 (4): 437–443. DOI 10.1002/ijc.11102.

3. Thompson G., Mills S., Coope D., O’Connor J.P., Jackson A. Imaging biomarkers of angiogenesis and the microvascular environment in cerebral tumours. Br. J. Radiol. 2011; 84 Spec No 2: S127–S144. DOI: 10.1259/bjr/66316279.

4. Senger D.R., Van deWater L., Brown L.F., Nagy J.A., Yeo K.T., Yeo T.K., Berse B., Jackman R.W., Dvorak A.M., Dvorak H.F. Vascular permeability factor (VPF, VEGF) in tumor biology. Cancer Metastasis Rev. 1993; 12: 303–324.

5. Ashrafpour H., Huang N., Neligan P.C., Forrest C.R., Addison P.D., Moses M.A., Levine R.H., Pang C.Y. Vasodilator effect and mechanism of action of vascular endothelial growth factor in skin vasculature. Am. J. Physiol. Heart. Circ. Physiol. 2004; 286 (3): 946–954. DOI: 10.1152/ajpheart.00901.2003.

6. Ku D.D., Zaleski J.K., Liu S.Brock T.A. Vascular endothelial growth factor induces EDRF- dependent relaxation in coronary arteries. Am. J. Physiol. 1993; 265 (2, Pt 2): 586–592.

7. Wei W., Chen Z.W., Yang Q., Jin H., Furnary A., Yao X.Q., Yim A.P., He G.W. Vasorelaxation induced by vascular endothelial growth factor in the human internal mammary artery and radial artery. Vasc. Pharmacol. 2007; 46 (4): 253–259. DOI: 10.1016/j.vph.2006.10.009.

8. Senger D.R., Galli S.J., Dvorak A.M., Perruzzi C.A., Harvey V.S., Dvorak H.F. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science. 1983; 219 (4587): 983–985. DOI: 10.1126/science.6823562.

9. Byrne T., Cascino T., Posner J. Brain metastasis from melanoma. J. Neurooncol. 1983; 1 (4): 313–317.

10. Plate K.H., Breier G., Weich H.A., Risau W. Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature. 1992; 359 (6398): 845–848.

11. Erdamar S., Bagci P., Oz B., Dirican A. Correlation of endothelial nitric oxide synthase and vascular endothelial growth factor expression with malignancy in patients with astrocytic tumors. J. Buon. 2006; 11 (2): 213–216.

12. Li X., Zhu Y., Kang H., Zhang Y., Liang H., Wang S., Zhang W. Glioma grading by microvascular permeability parameters derived from dynamic contrast-enhanced MRI and intratumoral susceptibility signal on susceptibility weighted imaging. Cancer Imaging. 2015; 15 (1): 4. DOI: 10.1186/s40644-015-0039-z.

13. Schlemmer H.P., Merkle J., Grobholz R., Jaeger T., Michel M.S., Werner A., Rabe J., van Kaick G. Can preoperative contrast-enhanced dynamic MR imaging for prostate cancer predict microvessel density in prostatectomy specimens? Eur. Radiol. 2004; 14 (2): 309–317. DOI: 10.1007/s00330-003-2025-2.

14. Hawighorst H., Weikel W., Knapstein P.G., Knopp M.V., Zuna I., Schönberg S.O., Vaupel P., van Kaick G. Angiogenic activity of cervical carcinoma: assessment by functional magnetic resonance imaging-based parameters and a histomorphological approach in correlation with disease outcome. Clin. Cancer Res. 1998; 4 (10): 2305–2312.

15. Hawighorst H., Knapstein P.G., Knopp M.V., Weikel W., Brix G., Zuna I., Schönberg S.O., Essig M., Vaupel P., van Kaick G.Uterine cervical carcinoma: comparison of standard and pharmacokinetic analysis of time intensity curves for assessment of tumor angiogenesis and patient survival. Cancer Res. 1998; 58 (16): 3598–3602.

16. Padhani A.R. MRI for assessing antivascular cancer treatments. Br. J. Radiol. 2003; 76, Spec No1: 60–80. https://doi.org/10.1259/bjr/15334380.

17. Thomas A.L., Morgan B., Drevs J., Unger C., Wiedenmann B., Vanhoefer U., Laurent D., Dugan M., Steward W.P. Vascular endothelial growth factor receptor tyrosine kinase inhibitors: PTK787/ZK 222584. Semin. Oncol. 2003; 30 (3, Suppl. 6): 32–38. DOI: 10.1016/S0093-7754(03)70023-2.

18. Roberts H.C., Roberts T.P., Brasch R.C., Dillon W.P. Quantitative measurement of microvascular permeability in human brain tumors achieved using dynamic contrastenhanced MR imaging: correlation with histologic grade. Am. J. Neuroradiol. 2000; 21 (5): 891–899.

19. Roberts H.C., Roberts T.P., Bollen A.W, Ley S., Brasch R.C., Dillon W.P. Correlation of microvascular permeability derived from dynamic contrast-enhanced MR imaging with histologic grade and tumor labeling index: a study in human brain tumors. Acad. Radiol. 2001; 8 (5): 384–391. DOI: http://dx.doi.org/10.1016/S1076-6332(03)80545-7.

20. Patankar T.F., Haroon H.A., Mills S.J., Balériaux D., Buckley D.L., Parker G.J., Jackson A. Is volume transfer coefficient (Ktrans) related to histologic grade in human gliomas? Am. J. Neuroradiol. 2005; 26 (10): 2455–2465.

21. Choi H.S., Kim A.H., Ahn S.S., Shin N., Kim J., Lee S-K. Glioma Grading Capability: Comparisons among Parameters from Dynamic Contrast-Enhanced MRI and ADC Value on DWI. Korean J. Radiol. 2013; 14 (3): 487–492. DOI: 10.3348/kjr.2013.14.3.487.

22. Awasthi R., Rathore R.K., Soni P., Sahoo P., Awasthi A., Husain N., Behari S., Singh R.K., Pandey C.M., Gupta R.K. Discriminant analysis to classify glioma grading using dynamic contrast-enhanced MRI and immunohistochemical markers. Neuroradiology. 2012; 54 (3): 205–213. DOI: 10.1007/s00234-011-0874-y

23. Zhang N., Zhang L., Qiu B., Meng L., Wang X., Hou B.L. Correlation of volume transfer coefficient Ktrans with histopathologic grades of gliomas. J. Magn. Reson. Imaging. 2012; 36 (2): 355–363. DOI: 10.1002/jmri.23675.

24. Jia Z., Geng D., Xie T., Zhang J., Liu Y. Quantitative analysis of neovascular permeability in glioma by dynamic contrast-enhanced MR imaging. J. Clin. Neurosci. 2012; 19 (6): 820–823. DOI: 10.1016/j.jocn.2011.08.030.

25. Awasthi R., Rathore R.K., Soni P., Sahoo P., Awasthi A., Husain N., Behari S., Singh R.K., Pandey C.M., Gupta R.K. Discriminant analysis to classify glioma grading using dynamic contrast-enhanced MRI and immunohistochemical markers. Neuroradiology. 2012; 54 (3): 205–213. DOI: 10.1007/s00234-011-0874-y.

26. Lüdemann L., Grieger W., Wurm R., Budzisch M., Hamm B., Zimmer C. Comparison of dynamic contrast-enhanced MRI with WHO tumor grading for gliomas. Eur. Radiol. 2001; 11 (7): 1231–1241. DOI: 10.1007/s003300000748.

27. Mills S.J., Soh C., Rose C.J., Cheung S., Zhao S., Parker G.J., Jackson A. Candidate biomarkers of extravascular extracellular space: a direct comparison of apparent diffusion

28. coefficient and dynamic contrastenhanced MR imaging-derived measurement of the volume of the extravascular extracellular space in glioblastoma multiforme. Am. J. Neuroradiol. 2010; 31 (3): 549–553. DOI: 10.3174/ajnr.A1844.

29. Zhang N., Zhang L., Qiu B., Meng L., Wang X., Hou B.L.Correlation of volume transfer coefficient Ktrans with histopathologic grades of gliomas. J. Magn. Reson. Imaging. 2012; 36 (2): 355–363.DOI: 10.1002/jmri.23675.


Review

For citations:


Nechipay E.A., Dolgushin M.B., Pronin A.I., Kobyakova E.A., Fadeeva L.M. Dynamic Contrast Enhanced MRI in Glioma Diagnosis. Medical Visualization. 2017;(4):88-96. (In Russ.) https://doi.org/10.24835/1607-0763-2017-4-88-96

Views: 2112


ISSN 1607-0763 (Print)
ISSN 2408-9516 (Online)