Preview

Medical Visualization

Advanced search

Comparison of fMRI Brain Responses in Healthy Subjects while Active, Passive and Imagined Hand Movements

Abstract

Objective: identify the structural features of the brain provision during motor loads of different complexity in healthy subjects. Material and methods. Comparison of fMRI cerebral reactions (individual and group) while active, passive and imagined right or left hand movement were analyzed in 20 right-handed healthy subjects by using paired t-test. Results. During active movements to clenching-unclenching the fingers motor fMRI responses were the more local and reproducible in comparison the bust fingers ones. This fact allows us to recommend this motor task as the most adequate at study of patients with cerebral disorders. The lower intensity of cortical responses and the more activation of subcortical structures was observed during left hand movement in comparison right hand one. During passive movements was observed the low volume of cerebral activation especially in cerebellum and primary motor cortex in comparison active ones. The main cortex fMRI response topography was similar while both active and passive tasks that allowed to use passive paradigm for patients with motor disorders and disturbance of consciousness. During imagined hand movements changes dramatically interplay of activated cerebral structures in comparison real movements: fMRI responses in the sensory-motor area and cerebellum were attenuated while activation of frontal zones and structures of ipsilateral hemisphere was increased. Conclusion. Comparative analysis of fMRI responses during active, passive and imagined hand movements showed that structural specificity of cerebral activity were determined by complexity of motor paradigms and by different including of motor and cognitive programs in their realization.

About the Authors

Galina Nikolaevna Boldyreva
Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences
Russian Federation


Elena Vasilievna Sharova
Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences
Russian Federation


Lyudmila Alekseevna Zhavoronkova
Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences
Russian Federation


Marina Victorovna Chelyapina
Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences
Russian Federation


Lada Pavlovna Dubrovskaya
M.V. Lomonosov Moscow State University
Russian Federation


Aleksandr Sergeevich Smirnov
N.N. Burdenko research Institute of Neurosurgery
Russian Federation


Elena Mihaylovna Troshina
N.N. Burdenko research Institute of Neurosurgery
Russian Federation


Igor Nikolaevich Pronin
N.N. Burdenko research Institute of Neurosurgery
Russian Federation


Valeriy Nikolaevich Kornienko
N.N. Burdenko research Institute of Neurosurgery
Russian Federation


References

1. Babiloni F., Babiloni C., Carducci F. et al. Multimodal integration of high-resolution EEG and functional magne tic resonance imaging data: a simulation study. NeuroImage. 2003. 19 (1): 1-15.

2. Campitelli G., Gober F., Parker A. Structure and stimulus familiarity: A study of memory in chess-players with functional magnetic resonance imaging. Spanish J. Psychol. 2005; 8 (2): 238-245.

3. Mulert C., Lemieux L. EEG-fMRI Physiological Basis, Technique and Applications. Berlin; Heidelberg: Springer-Verlag, 2010. 539 p.

4. Штарк М.Б., Коростышевская А.М., Резакова М.В., Савелов А.А. Функциональная магнитно-резонансная томография и нейронауки. Успехи физиологических наук. 2012; 43 (1): 3-29.

5. Болдырева Г.Н., Жаворонкова Л.А., Шарова Е.В. и др. фМРТ-ЭЭГ исследование реакций мозга здорового человека на функциональные нагрузки. Физиология человека. 2009; 35 (3): 20-30.

6. Болдырева Г.Н., Жаворонкова Л.А., Шарова Е.В. и др. ЭЭГ-фМРТ анализ функциональной специализации мозга человека в норме и при церебральной патологии. Медицинская визуализация. 2012; 1: 16-26.

7. Шарова Е.В., Мигалев А.С., Куликов М.А. и др. Сопоставление реактивных изменений ЭЭГ и фМРТ-характеристик мозга здорового человека на основе многомерной статистики. Журнал высшей нервной деятельности. 2012; 62 (20): 143-156.

8. Boldyreva G.N., Sharova E.V., Zhavoronkova L.A. et al. Structural-Functional Characteristics of Brain Functioning on Performance and Imagination of Motor Tasks in Healthy People (EEG and fMRI studies). Neuroscie. Behav.Physiol. 2014; 7: 731-739.

9. Болдырева Г.Н., Шарова Е.В., Жаворонкова Л.А. и др. фМРТ и ЭЭГ реакции мозга здорового человека при активных и пассивных движениях ведущей руки. Журнал высшей нервной деятельности. 2014; 64 (5): 488-499.

10. Шарова Е.В., Шендяпина М.В., Болдырева Г.Н. и др. Анализ индивидуальной вариативности фМРТ-ответов здоровых испытуемых при открывании глаз, двигательных и речевых нагрузках. Физиология человека. 2015; 41 (1): 5-16.

11. Galazzo I.B., Storti S.F., Formaggio E. et al. Investigation of brain hemodynamic changes induced by active and passive movements: a combined arterial spin labeling-BOLD fMRI study. J. Magn. Res. Im. 2014; 40 (4): 937-948.

12. Kim S., Jennings J.E., Strupp J.P. et al. Functional MRI of human motor cortices during overt and imagined finger movements. Int. J. Imaging Systems and Technol. 1995; 6: 271-279.

13. Roux F.E., Lotterie J.A., Cassol E. et al. Cortical areas involved in virtual movement of phantom limbs: comparison with normal subjects. Neurosurgery. 2003; 53 (6): 1342-1353.

14. Andre J.S. Motor imagery of complex everyday movements. An fMRI study. NeuroImage. 2007; 34: 702-713.

15. Yuan H., Liu T., Szarkowski R. et al. Negative covariation between task- related responses in alpha/beta bandactivity and BOLD in human sensorimotor cortex: EEG and fMRI study of motor imagery and movements. NeuroImage. 2010; 49 (3): 2596-2605.

16. Formaggio E., Storti S.f., Cerini R. et al. Brain oscillatjry activity during motor imagery in EEG-fMRI coregistration. Magn. Res. Imaging. 2010; 28 (10): 1403-1412.

17. Hermes D., Vansteensel M.J., Albers A.M. et al. Functional MRI based identification of brain areas involved in motor imagery for implantable brain-computer interfaces. J. Neural Eng. 2011; 8 (2): 328-349.

18. Castrop F., Dresel C., Hennenlotter A. et al. Basal ganglia-premotor dysfunction during movement imagination in Writer’s cramp mirrored, imagined and executed movements differentia. Mov. Disord. 2012; 27 (11): 1432-1439.

19. Фролов А.А., Бирюкова Е.В., Бобров П.Д. и др. Принципы нейрореабилитации, основанные на интерфейс мозг-компьютер. Физиология человека. 2013; 39 (2): 99-113.

20. Evans А., Collins D., Milner B. An MRI-based stereotactic atlas from 250 young normal subjects. J. Soc. Neurosci. Abstr. 1992; 18: 408.

21. Van de Winckel A., Kilngeis K., Bruyninckx F. et al. How does brain activation differ in children with unilateral cerebral palsy compared to typically developing children, during active and passive movements, and tactile stimulation? An fMRI study. Res. Dev. Disabil. 2013; 34 (1): 183-197.

22. Wu T., Liu J., Hallett M. et al. Cerebellum and integration of neural networks in dual-task processing. NeuroImage. 2013; 65: 466-475.

23. Лурия А.Р. Основы нейропсихологии. М.: Akademiya, 2002: 88-128.

24. Болдырева Г.Н., Жаворонкова Л.А., Шарова Е.В. и др. ЭЭГ-фМРТ оценка реакций на двигательные нагрузки при опухолевом поражении мозга. Физиология человека. 2010; 36 (5): 66-75.

25. Formaggio E., Storti S., Galazzo I. et al. Modulation of event-related desynchronization in robot-assisted hand performance: brain oscillatory changes in active, passive and imagined movements. Neuro Engineering and Rehabil. 2013; 10 (1): 24-34.


Review

For citations:


Boldyreva G.N., Sharova E.V., Zhavoronkova L.A., Chelyapina M.V., Dubrovskaya L.P., Smirnov A.S., Troshina E.M., Pronin I.N., Kornienko V.N. Comparison of fMRI Brain Responses in Healthy Subjects while Active, Passive and Imagined Hand Movements. Medical Visualization. 2015;(5):100-112. (In Russ.)

Views: 1110


ISSN 1607-0763 (Print)
ISSN 2408-9516 (Online)