Preview

Medical Visualization

Advanced search

Diffusion-Weighted Magnetic Resonance Imaging with Apparent Diffusion Coefficient Measurement for Monitoring and Early Tumor Response Prediction During Lymphoma Chemotherapy

Abstract

Objective. To determine usefulness of diffusionweighted magnetic resonance imaging (MRI-DWI) with calculation of the apparent diffusion coefficient (ADC) for monitoring and early prediction of tumor response during chemotherapy (ChT) of lymphoma. Materials and Methods. Study included 25 patients with Hodgkin lymphoma and 26 patients with non-Hodgkin lymphoma (NHL). Whole body DWI-MRI was performed before and after ChT. MRI-DWI at the level of target lesion was performed after 1 cycle, before and after 2 cycles of ChT. The largest not necrotic lymph node was chosen as a target lesion. Built-in coil was used for whole body DWIMRI, surface and built-in coils were used for DWI-MRI of the target lesion. Results. During lymphoma ChT tumors decrease in size and ADC increases rapidly, to the maximum extent after 1 cycle of ChT. Earliest ADC increase was recorded on day 3 after the start of ChT. At subsequent stages of treatment ADC increase is slowing down. In case of tumor progression ADC decreases. In NHL target lesion ADC increase before 2nd cycle of ChT >37% predicts adequate response after 2 cycles with sensitivity of 93%, specificity of 90% and an accuracy of 92%. In patients with complete tumor response after ChT mean pre-treatment target lesion ADC was significantly lower (0.65 ± 0.15 ⋅ 10-3 mm2/s) than in patients with non-complete response (0.94 ± 0.39 ⋅ 10-3 mm2/s; p <0.05). Pre-treatment ADC ≤ 0.88 ⋅ 10-3 mm2/s predicts complete response after ChT with a sensitivity of 100%, specificity of 50% and accuracy of 77%; an increase of ADC after the 1st cycle >25% - with a sensitivity of 83%, specificity of 67% and an accuracy of 75%. When two parameters are used combined prediction accuracy increases to 83%. ADC values obtained using the built-in coil showed a lower prognostic properties compared with the values obtained using a surface coil. Conclusions. MRI-DWI can be used as a non-irradiative method of monitoring and early tumor response prediction during lymphoma ChT. ADC is a sensitive biomarker of tumor regression and progression in lymphoma.

About the Authors

Siarhei Anatolevich Kharuzhyk
N.N. Alexandrov National Cancer Center of Belarus; Belarussian Medical Academy of Postgraduate Education
Russian Federation


Edward Antonovich Zhavrid
N.N. Alexandrov National Cancer Center of Belarus
Russian Federation


Nina Vladimirovna Sachivko
N.N. Alexandrov National Cancer Center of Belarus
Russian Federation


References

1. Алгоритмы диагностики и лечения злокачественных новообразований; Под. ред. О.Г. Суконко, С.А. Красного. Минск: Профессиональные издания, 2012. 508 с.

2. A predictive model for aggressive non-Hodgkin's lymphoma. The International Non-Hodgkin's Lymphoma Prognostic Factors Project. N. Engl. J. Med. 1993; 329 (14): 987-994.

3. El-Galaly T.C., Villa D., Alzahrani M. et al. Outcome prediction by extranodal involvement, IPI, and R-IPI in the PET/CT and rituximab era: A Danish-Canadian study of 443 patients with diffuse-large B-cell lymphoma. Am. J. Hematol. 2015 Aug 11. doi: 10.1002/ajh.24169. [Epub ahead of print].

4. Сидоренко Ю.С., Максимова Н.А., Айрапетов К.Г., Верховцева А.И. Способ ультразвукового прогнозирования лечения неходжкинских лимфом. RU 2211665. 2003.

5. Новиков С.Н., Канаев С.В., Гиршович М.М. Способ прогнозирования чувствительности к противоопухолевой терапии лимфомы Ходжкина. RU 2393890. 2010.

6. Хоружик С.А., Жаврид Э.А., Карман А.В. Возможности диффузионно-взвешенной магнитно-резонансной томографии и позитронной эмиссионной томографии при раннем прогнозировании эффективности химиотерапии лимфом. Известия Национальной академии наук Беларуси. Серия медицинских наук. 2014; 2: 107-120.

7. Meignan M., Itti E., Gallamini A., Younes A. FDG PET/CT imaging as a biomarker in lymphoma. Eur. J. Nucl. Med. Mol. Imaging. 2015; 42 (4): 623-633.

8. Хоружик С.А., Жаврид Э. А., Сачивко Н.В. и др. Сравнение возможностей диффузионно-взвешенной магнитно-резонансной томографии всего тела и рентгеновской компьютерной томографии при стадировании лимфом. Онкологический журнал. 2015; 9 (1): 43-48.

9. Huang M.Q., Pickup S., Nelson D.S. et al. Monitoring response to chemotherapy of non-Hodgkin's lymphoma xenografts by T(2)-weighted and diffusion-weighted MRI. NMR Biomed. 2008; 21 (10): 1021-1029.

10. Kharuzhyk S.A., Petrovskaya N.A., Vosmitel M.A. Diffusion-weighted magnetic resonance imaging in noninvasive monitoring of antiangiogenic therapy in experimental tumor model. Exp. Oncol. 2010; 32 (2): 104-106.

11. Thoeny H.C., De Keyzer F., Chen F. et al. Diffusionweighted MR imaging in monitoring the effect of a vascular targeting agent on rhabdomyosarcoma in rats. Radiology. 2005; 234 (3): 756-764.

12. Kim S., Loevner L., Quon H. et al. Diffusion-weighted magnetic resonance imaging for predicting and detecting early response to chemoradiation therapy of squamous cell carcinomas of the head and neck. Clin. Cancer. Res. 2009; 15 (3): 986-994.

13. Park S.H., Moon W.K., Cho N. et al. Diffusion-weighted MR Imaging: pretreatment prediction of response to neoadjuvant chemotherapy in patients with breast cancer. Radiology. 2010; 257 (1): 56-63.

14. Heo S.H., Shin S.S., Kim J.W. et al. Pre-treatment diffusion-weighted MR imaging for predicting tumor recurrence in uterine cervical cancer treated with concurrent chemoradiation: value of histogram analysis of apparent diffusion coefficients. Korean J. Radiol. 2013; 14 (4): 616-625.

15. Хоружик С.А., Сачивко Н.В., Жаврид Э.А. Влияние ряда клинических и технических факторов на значение измеряемого коэффициента диффузии при лимфоме до начала лечения. Республиканская научно-практическая конференция “Актуальные проблемы диагностики и лечения злокачественных новообразований”. Материалы конф., Минск, 21 ноября 2014 г.; Под ред. А.В. Прохорова. Минск: БГМУ, 2014: 104-106.

16. Даценко П.В., Гомболевский В.А., Щербахина Е.В. и др. Роль компьютерной томографии в диагностической оценке лечения лимфомы Ходжкина. Вестник РНЦРР МЗ РФ. 2012; 2 (13): 4.

17. Punwani S., Taylor S.A., Saad Z.Z. et al. Diffusion-weighted MRI of lymphoma: prognostic utility and implications for PET/MRI? Eur. J. Nucl. Med. Mol. Imaging. 2013; 40 (3): 373-385.

18. Cheson B.D., Fisher R.I., Barrington S.F. et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J. Clin. Oncol. 2014; 32 (27): 3059-3068.

19. Михайлов А.И., Панов В.О., Тюрин И.Е. Диффузионно-взвешенная магнитно-резонансная томография всего тела с оценкой измеряемого коэффициента диффузии при лимфоме Ходжкина. Вестник рентгенологии и радиологии. 2015; 2: 28-34.

20. Хоружик С.А., Леусик Е.А. Повторные компьютерно-томографические исследования: дозы облучения и радиационный риск при злокачественных лимфомах. Радиационная биология. Радиоэкология. 2014; 54 (5): 466-473.

21. De Paepe K., Bevernage C., De Keyzer F. et al. Whole-body diffusion-weighted magnetic resonance imaging at 3 Tesla for early assessment of treatment response in non-Hodgkin lymphoma: a pilot study. Cancer Imaging. 2013; 13: 53-62.

22. Horger M., Claussen C., Kramer U. et al. Very early indicators of response to systemic therapy in lymphoma patients based on alterations in water diffusivity - a preliminary experience in 20 patients undergoing wholebody diffusion-weighted imaging. Eur. J. Radiol. 2014; 83 (9): 1655-1664.

23. Scott D.W., Gascoyne R.D. The tumour microenvironment in B cell lymphomas. Nat. Rev. Cancer. 2014; 14 (8): 517-534.

24. Padhani A.R., Liu G., Koh D.M. et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia. 2009; 11 (2): 102-125.


Review

For citations:


Kharuzhyk S.A., Zhavrid E.A., Sachivko N.V. Diffusion-Weighted Magnetic Resonance Imaging with Apparent Diffusion Coefficient Measurement for Monitoring and Early Tumor Response Prediction During Lymphoma Chemotherapy. Medical Visualization. 2015;(5):83-99. (In Russ.)

Views: 1058


ISSN 1607-0763 (Print)
ISSN 2408-9516 (Online)