Preview

Medical Visualization

Advanced search

DCE MRI in Differential Diagnosis of Primary and Secondary Brain Tumors

Abstract

Aim: the article is devoted to determine the capabilities of T1-dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) in differentiation diagnosis primary and secondary brain tumors. Materials and methods. The analysis was based on data generated from MRI examinations using a T1-DCE protocol of 74 patients with intracerebral tumors: gliomas - 24 (32.4%) cases (glioblastoma - 17, astrocytoma - 5 and oligodendroglioma - 2), meningioma - 23 (31.1%) and metastases - 27 (36.5%) cases (melanoma - 8, breast cancer - 7 and lung cancer - 12). MRI was performed on 3,0-T scanner (Skyra, Siemens AG, Erlangen Germany) and included following sequences: a) routine sequences in axial direction before contrast agent injection (T1-SE, T2-SE, T2-FLAIR, DWI), b) T1-Vibe with two different flip angles and DCE-protocol, c) T1-VIBE in axial direction after contrast injection with 3D-reconstruction. Results. The highest average Ktrans and Ve were observed in meningiomas (0.097 ± 0.019 min-1 and 0.151 ± 0.017), the lowest in gliomas Grade I-II (0.022 ± 0.001 min-1 and 0.029 ± 0.003). The highest average were in melanoma mts (1.14 ± 0.331 min-1) and lowest - in breast cancer mts (0.063 ± 0.193 min-1). Conclusion. DCE MRI - potentially perspective and demanding further studying method allowing to assume possibility of carrying out effective differential diagnostics of various brain tumors by a cumulative assessment of the pharmacokinetic parameters providing valuable information on hemodynamic and proliferative properties of tumor tissue.

About the Authors

Emiliya Andreyevna Nechipay
N.N. Blokhin Russian cancer research center
Russian Federation


Mikhail Borisovich Dolgushin
N.N. Blokhin Russian cancer research center
Russian Federation


Igor Nikolaevich Pronin
N.N. Burdenko Neurosurgery Institute
Russian Federation


Ali Khasyanovich Bekyashev
N.N. Blokhin Russian cancer research center
Russian Federation


Ekaterina Alekseevna Kobyakova
N.N. Blokhin Russian cancer research center
Russian Federation


Ludmila Mikhailovna Fadeeva
N.N. Burdenko Neurosurgery Institute
Russian Federation


Evgeniy Igorevich Shultc
N.N. Burdenko Neurosurgery Institute
Russian Federation


References

1. Марченко С.В. Комплексное лечение злокачественных глиом полушарий большого мозга: Дис. … канд. мед. наук. СПб., 1997. 157 с.

2. Lamszus K. Meningioma pathology, genetics and biology. J. Neuropathol. Exp. Neurol. 2004; 63: 275-286.

3. Dowd C.F., Halbach V.V., Higashida R.T. Meningiomas: the role of preoperative angiography and embolization. Neurosurg. Focus. 2003; 15 (1): E10.

4. Kim L.S., Huang S., Lu W. et al. Vascular endothelial growth factor expression promotes the growth of breast cancer brain metastases in nude mice. Clin. Exp. Metastasis. 2004; 21 (2): 107-118.

5. Siomin V., Vogelbaum M., Kanner A. et al. Posterior fossa metastases: risk of leptomeningeal disease when treated with stereotactic radiosurgery compared to surgery. J. Neurooncol. 2004; 67 (1-2): 115-121.

6. Brem S., Panattil J.G. An era of rapid advancement: diagnosis and treatment of metastatic brain cancer. Neurosurgery (Suppl.). 2005; 57 (5): 5-9.

7. Gavrilovic I.T., Posner J.B. Brain metastases: epidemiology and pathophysiology. J. Neurooncol. 2005; 75: 5-14.

8. Красовский Е.Б. Опухоли мозга и мозговых оболочек. В 2-х томах. Т. 2: Патологическая анатомия. М.: Московская правда, 1958. 720 с.

9. Мартынов Ю.С., Идрисова М.И. Поражение головного мозга при раке легких. Журнал невропатологии и психиатрии им. С.С. Корсакова. 1981; 11: 1601-1606.

10. Patchell R.A., Tibbs P.A., Walsh J.W. et al. A randomized trial of surgery in the treatment of single metastases to the brain. N. Engl. J. Med. 1990; 322: 494-500.

11. Holash J., Maisonpierre P.C., Compton D. et al. Vessel coop tion, regression, and growth in tumor mediated by angiopoietins and VEGF. Science. 1999; 284 (5422): 1994-1998.

12. Blouw B., Song H., Tihan T. et al. The hypoxic response of tumors is dependent on their microenvironment. Cancer Cell. 2003; 4: 133-146.

13. Baert A.L., Sartor K. Dynamic contrast-enhanced magnetic resonance imaging in oncology. Berlin etc.: Springer, 2005; 6: 81-92.

14. Долгушин М.Б. Нейровизуализация метастазов злокачественных опухолей в головном мозге и оценка эффективности их лечения: Автореф. дис. ... д-ра мед. наук. М., 2012. 24 с.

15. Blaschuk O.W., Rowlands T.M. Cadherins as modulators of angiogenesis and the structural integrity of blood vessels. Cancer Metastasis Rev. 2000; 19 (1-2): 1-5.

16. Jackson A., Jayson G.C., Li K.L. et al. Reproducibility of quantitative dynamic contrast-enhanced MRI in newly presenting glioma. Br. J. Radiol. 2003; 76: 153-162.

17. Arnold S.M., Patchell R.A. Diagnosis and management of brain metastases. Hematol. Oncol. Clin. N. Am. 2001; 15: 1085-1107.

18. Roberts T.P. Physiologic measurements by contrastenhanced MR imaging: expectations and limitations. J. Magn. Reson. Imaging. 1997; 7: 82-90.

19. Hwang T., Close T., Grego J. et al. Predilection of brain metastasis in gray and white matter junction and vascular border zones. Cancer. 1996; 77: 1551-1555.

20. Leenders W., Kusters B., Pikkemaat J. Vascular endothelial growth factor-A determines detectability of experimental melanoma brain metastasis in GD-DTPA-enhanced MRI. Int. J. Cancer. 2003; 105 (4): 437-443.

21. Byrne T., Cascino T., Posner J. Brain metastasis from melanoma. J. Neurooncol. 1983; 1: 313-317.

22. Nussbaum E., Djalilian H., Cho K. et al. Brain metastases: histology, multiplicity, surgery, and survival. Cancer. 1996; 78: 1781-1788.

23. Tofts P.S., Brix G., Buckley D.L. et al. Estimating kinetic parameters from dynamic contrast-enhanced T1-weighted MRI of a diffusible tracer: standardized quantities and symbols. J. Magn. Reson. Imaging. 1999; 10: 223-232.

24. Weidner N. Tumoral vascularity as a prognostic factor in cancer patients: the evidence continues to grow. J. Pathol. 1998; 184: 119-122.

25. Bisese J. MRI of cranial metastasis. Sem. Ultrasound CT MR. 1992; 13: 473-483.

26. Sugahara T., Korogi Y., Kochi M. et al. Perfusion-sensitive MR imaging of gliomas: comparison between gradientecho and spin echo echo-planar imaging techniques. Am. J. Neuroradiol. 2001; 22: 1306-1315.

27. Pavelka M., Roth J. Funktionelle Ultrastruktur. Wien: Springer-Verlag, 2009: 234-235.

28. Plate K.H., Mennel H.D. Vascular morphology and angiogenesis in glial tumors. Exp. Toxicol. Pathol. 1995; 47: 89-94.

29. Fagerholm U. The highly permeable blood-brain barrier: an evaluation of current opinions about brain uptake capacity. Drug. Discov. Today. 2007; 12: 1076-1082.

30. Sims D.E. Diversity within pericytes. Clin. Exp. Pharmacol. Physiol. 2000; 27: 842-846.

31. Shepro D., Morel N.M. Pericyte physiology. FASEB. 1993; 7: 1031-1038.

32. Jain R.K., di Tomaso E., Duda D.G. et al. Angiogenesis in brain tumours. Nat. Rev. Neurosci 2007; 8 (8): 610-622.

33. Chao H., Hirschi K.K. Hemato-vascular origins of endothelial progenitor cells? Microvasc. Res. 2010; 79: 169-173.

34. Dome B., Dobos J., Tovari J. et al. Circulating bone marrow-derived endothelial progenitor cells: Characterization, mobilization, and therapeutic considerations in malignant disease. Cytometry A. 2008; 73: 186-193.

35. Monsky W.L., Mouta Carriera C., Tsuzuki Y. et al. Role of host microenvironment in angiogenesis and microvascular functions in human breast cancer xenografts: mammary fat pad versus cranial tumors. Clin. Cancer Res. 2002; 8: 1008-1013.

36. Kassner A., Thornhill R. Measurements the integrity of the human blood-brain barrier using magnetic resonance imaging. Methods Mol. Biol. 2011; 686: 229-245.

37. Ohno K., Pettigrew K.D., Rapopport S.I. Lower limits of cerebrovascular permeability to nonelectrolytes in the conscious rat. Am. J. Physiol. 1978; 235 (3): 299-307.

38. Paulson O.B., Hertz M.M. Tracer kinetics and physiologic modeling. In: Lambrecht R.M., Rescigno A (eds). Theory to practice. Lecture notes in biomathematics. Berlin; Heidelberg; New York: Springer, 1983: 429-444.

39. Larsson H.B., Stubgaard M., Frederiksen J.L. et al. Quantification of blood-brain barrier defect by magnetic resonance imaging and gadolinium-DTPA in patients with multiple sclerosis and brain tumors. Magn. Reson. Med. 1990; 16: 117-131.

40. Tofts P.S., Kermode A.G. Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn. Reson. Med. 1991; 17: 357-367.

41. Roberts H.C., Roberts T.P., Bollen A.W. et al. Correlation of microvascular permeability derived from dynamic contrast-enhanced MR imaging with histologic grade and tumor labeling index: a study in human brain tumors. Acad. Radiol. 2001; 8 (5): 384-391.

42. Haaron H.A., Buckley D.L. Patankar T.A. et al. A comparison of Ktrans measurements in gliomas obtained with convectional and first pass model. Proc. 10th Intern. Magn. Reson. Med. Hawaii. 2002a; 663.

43. Haaron H.A., Patankar T.A., Dow G. et al. Relationship between vascular endothelial permeability and histological grade in human gliomas using a novel first pass model. Proc 10th Intern. Magn. Reson. Med. Hawaii. 2002b; 2113.

44. Zhu X.P., Li K.L., Kamaly-Asl I.D. et al. Quantification of endothelial permeability, leakage space, and blood volume in brain tumors using combined T1 and T2* contrast-enhanced dynamic MR imaging. J. Magn. Reson. Imaging. 2000; 11: 575-585.

45. Long D.M. Vascular ultrastructure in human meningiomas and schwannomas. J. Neurosurg. 1973; 38: 409-419.

46. Andersen C., Jensen F.T. Differences in blood-tumourbarrier leakage of human intracranial tumours: quantificative monitoring of vasogenic oedema and its response to glucocorticoid treatment. Acta Neurochir (Wien). 1998; 140: 919-924.

47. Johnson G.., Wetzel S., Cha S. et al. Simultaneous measurement of blood volume and vascular transfer constant by first pass pharmacokinetic modeling. Proc 10th Intern Magn. Reson. Med. Hawaii. 2002; 2123.


Review

For citations:


Nechipay E.A., Dolgushin M.B., Pronin I.N., Bekyashev A.Kh., Kobyakova E.A., Fadeeva L.M., Shultc E.I. DCE MRI in Differential Diagnosis of Primary and Secondary Brain Tumors. Medical Visualization. 2015;(4):18-30. (In Russ.)

Views: 1099


ISSN 1607-0763 (Print)
ISSN 2408-9516 (Online)