Preview

Medical Visualization

Advanced search

Automated Breast Volume Sonography - New Technology in Breast Cancer Diagnosis

Abstract

Aim. To study diagnostic capabilities of the new method Automated Breast Volume Sonography (ABVS) in the reference to mammography. Materials and methods. ABVS were performed in 152 patients on ACUSON S2000 ABVS with a special transducer for automated scanning 14L5BV 14 MGz. All lesions were classified according to BIRADS classification, topography, presence of the retraction fenomenon, microcalcification by 2 experts independently. Inter-observer variability were classified under kappa value. All results were verified by cytological and pathomorphological examinations of the specimens. Diagnostic confidence of the ABVS were calculated. Results. Interrater variability values were good for BIRADS classification (k = 0.78), poor - for benign lesions (k = 0.53), and excellent (k = 0.96) for malignant. Retraction phenomenon that is seen by mammography in breast cancer also was specifically showed by ABVS, interobserver variability was high (k = 0.85). This symptom was seen in 88.2% in breast cancer. Sensitivity and specificity of the ABVS in breast cancer diagnosis according to our results were 87% and 72%. High sensitivity and specificity was proved in the case with high density breasts (types C and D) - 100% and 96% respectively. Resume. ABVS was highly effective in women with higher breast density. ABVS data can be compared with mammography data therefore could be recommended as an adjunct to mammography in the cases of suspicious dense breast lesions.

About the Authors

Veronika Yevgenyevna Gazhonova
“Educational and Research Medical Center” Management Department of the President of Russian Federation; “United Hospital and Policlinic” Management Department of the President of Russian Federation
Russian Federation


Maria Petrovna Efremova
“Educational and Research Medical Center” Management Department of the President of Russian Federation; “United Hospital and Policlinic” Management Department of the President of Russian Federation
Russian Federation


Elena Mikhaylovna Khlustina
“United Hospital and Policlinic” Management Department of the President of Russian Federation
Russian Federation


Ekaterina Valeryevna Shatilova
“United Hospital and Policlinic” Management Department of the President of Russian Federation
Russian Federation


Tatyana Nikolayevna Kuleshova
“United Hospital and Policlinic” Management Department of the President of Russian Federation
Russian Federation


Alexander Leonidovich Lozovator
“United Hospital and Policlinic” Management Department of the President of Russian Federation
Russian Federation


References

1. Аксель Е.М. Злокачественные новообразования молочной железы: состояние онкологической помощи, заболеваемость и смертность. Маммология. 2006; 1: 9-13.

2. Злокачественные новообразования в России в 2012 году (заболеваемость и смертность). Сборник; Под ред. В.И. Чиссова, В.В. Старинского, Г.В. Петровой. М.: МНИОИ им. П.А. Герцена Минздравсоцразвития России, 2012. 256 с.

3. Чиссов В.И., Старинский В.В., Петрова Г.В. Злокачественные новообразования в России (Заболеваемость и смертность). М.: Центр информ. техн. и эпидемиол. исследований в области онкологии, 2012. 262 с.

4. Рожкова Н.И. Лучевая диагностика в маммологии: Руководство для врачей. М.: СпецИздат, 2014. 128 p.

5. Корженкова Г.П. Комплексная рентгено-сонографическая диагностика заболеваний молочной железы. М.: СТРОМ, 2004. 123 с.

6. Якобс О.Э., Рожкова Н.И., Мазо М.Л. и др. Опыт использования виртуальной сонографии молочной железы. Вестник рентгенологии и радиологии. 2014; 1: 23-32.

7. Гажонова В.Е., Бачурина Е.М., Хлюстина Е.М. и др. Автоматическая сонотомография молочных желез (3D ABVS). Часть 1. Интеграция УЗ-метода в радиологические стандарты томографии. Поликлиника. 2014; 3: 42-48.

8. Гажонова В.Е., Бачурина Е.М., Хлюстина Е.М. и др. Автоматическая сонотомография молочных желез (3D ABVS). Часть 2. Клиническое применение сонотомографии в диагностике рака молочных желез. Поликлиника. 2014; 5 (2): 33-41.

9. Maturo V.G., Zusmer N.R., Gilson A.J., et al. Ultrasound of the whole breast utilizing a dedicated automated breast scanner. Radiology. 1980; 137: 457-463.

10. Tozaki M., Isobe S., Yamaguchi M. et al. Optimal scanning technique to cover the whole breast using an automated breast volume scanner. Jap. J. Radiol. 2010; 28: 325-328.

11. Wojcinski S., Farrokh A., Hille U. et al. The automated breast volume scanner (ABVS): initial experiences in lesion detection compared with conventional handheld B-mode ultrasound: a pilot study of 50 cases. Int. J. Women's Health. 2011; 13: 337-346.

12. Shin H.J., Kim H.H., Cha J.H. et al. Automated ultrasound of the breast for diagnosis: interobserver agreement on lesion detection and characterization. Am. J. Roentgenol. 2011; 13 (3): 747-754.

13. Lin X., Wang J., Han F. et al. Analysis of eighty-one cases with breast lesions using automated breast volume scanner and comparison with handheld ultrasound. Eur. J. Radiol. 2012; 13 (5): 873-878.

14. Wang H.Y., Jiang Y.X., Zhu Q.L. et al. Differentiation of benign and malignant breast lesions: a comparison between automatically generated breast volume scans and handheld ultrasound examinations. Eur. J. Radiol. 2012; 13 (11): 3190-3200.

15. Wang Z.L., Xu J.H., Li J.L. et al. Erratum to: comparison of automated breast volume scanning to hand-held ultrasound and mammography. Radiol. Med. 2012; 13 (8): 1443.

16. Wang Z.L., Xw J.H., Li J.L. et al. Comparison of automated breast volume scanning to hand-held ultrasound and mammography. Radiol. Med. 2012; 13 (8): 1287-1293.

17. Golatta M., Franz D., Harcos A. et al. Interobserver reliability of automated breast volume scanner (ABVS) interpretation and agreement of ABVS findings with hand held breast ultrasound (HHUS), mammography and pathology results. Eur. J. Radiol. 2013; 13 (8): 332-336.

18. Corsetti J., Ferrari A., Ghirardi M. et al. Role of ultrasonography in detecting mammographically occult breast carcinoma in women with dense breasts. Eur. J. Cancer. 2008; 44: 539-544.

19. Tozaki M., Fukuma E. Accuracy of determining preoperative cancer extent measured by automated breast ultrasonography. Jap. J. Radiolo. 2010; 13 (10): 771-773.

20. Isobe S., Tozaki M., Yamaguchi M. et al. Detectability of breast lesions under the nipple using an automated breast volume scanner: comparison with handheld ultrasonography. Jap. J. Radiol. 2011; 1 3 (5): 361-365.


Review

For citations:


Gazhonova V.Ye., Efremova M.P., Khlustina E.M., Shatilova E.V., Kuleshova T.N., Lozovator A.L. Automated Breast Volume Sonography - New Technology in Breast Cancer Diagnosis. Medical Visualization. 2015;(2):67-77. (In Russ.)

Views: 1058


ISSN 1607-0763 (Print)
ISSN 2408-9516 (Online)