Preview

Медицинская визуализация

Расширенный поиск

Сравнительная характеристика радиофармацевтических препаратов для визуализации воспалительных и инфекционных процессов методом эмиссионной томографии

Полный текст:

Аннотация

Визуализация и радионуклидная диагностика воспалительных и инфекционных процессов методами эмиссионной томографии, основывающейся на локальных физико-химических изменениях в пораженной ткани, позволяет отразить функциональный статус патологии, тогда как другие современные методы визуализации (КТ, МРТ, УЗИ) опираются на морфологические изменения в тканях, что лишает возможности оценить патологию на ранней стадии развития. К сожалению, на сегодняшний день нет “идеального” радиофармпрепарата, отвечающего определенным критериям, поэтому многолетний мировой опыт использования меченых агентов для визуализации воспалений и их конкретные позитивные результаты явились основанием в предоставлении достаточного количества препаратов для независимого выбора применения того или иного агента.

Об авторах

Александр Сергеевич Лунёв
ФГБОУ ВПО” Московская государственная академия ветеринарной медицины и биотехнологии им. К.И. Скрябина”
Россия


Николай Петрович Лысенко
ФГБОУ ВПО” Московская государственная академия ветеринарной медицины и биотехнологии им. К.И. Скрябина”
Россия


Кристина Андреевна Петросова
ФГБУ ГНЦ “Федеральный медицинский биофизический центр им. А.И. Бурназяна” ФМБА России
Россия


Список литературы

1. Stephenson T.J. Inflammation. General and systematic pathology; Ed. J.C.E. Elsevier. London: Underwood, 2004. 202-220.

2. Boerman O.C., Dams E.T.M., Oyen W.J.G. et al. Radiopharmaceuticals for scintigraphic imaging of infection and inflammation. Inflamm. Res. 2001; 50: 55-64.

3. Cortens F.H.M., van der Meer J.W.M. Nuclear medicine's role in infection and inflammation. Lancet. 1999; 354 (28): 765-770.

4. Phelps M.E. Positron emission tomography provides molecular imaging of biological processes. Proc. Natl. Acad. Sci. USA. 2000; 97: 9226-9231.

5. Bloomfield P.M., Rajeswaran S., Spinks T.J. et al. The design and physical characteristics of a small animal positron emission tomograph. Phys. Med. Biol. 1995; 40: 1105-1126.

6. Barrett J.A., Cheesman E.H., Harris T.D. et al. Radiopharmaceuticals for imaging infection and inflammation. US 6416733. 1998.

7. Laverman P., Bleeker-Rovers C.P., Corstens F.H.M. et al. Development of Infection and Inflammation Targeting Compounds. Curr. Radiopharm. 2008; 1: 42-48.

8. Варламова Н.В., Скуридин В.С., Сазонова С.И. Получение и медико-биологические испытания меченного технецием-99m норфлоксацина гидрохлорида. Бюллетень сибирской медицины. 2010; 6: 108-116.

9. Rennen H.J.J., Boerman O.C., Oyen W.J.G., Corstens F.H.M. Scintigraphic Imaging of Inflammatory Processes. Curr. Med. Chem. 2002; 1: 63-75.

10. Завадовская В.Д., Килина О.Ю., Куражов А.П. и др. Сцинтиграфия с таллием-199-хлоридом в выявлении воспалительных заболеваний опорно-двигательного аппарата. Медицинская визуализация. 2003; 3: 102-105.

11. Завадовская В.Д., Килина О.Ю., Синилкин И.Г. и др. Сцинтиграфическая диагностика остеомиелита. Медицинская радиология и радиационная безопасность. 2004; 49 (1): 63-70.

12. Завадовская В.Д., Килина О.Ю., Дамбаев Г.Ц. Радионуклидные методы исследования в диагностике хронического остеомиелита. Медицинская радиология и радиационная безопасность. 2007; 52 (3): 54-60.

13. Сазонова С.И., Лишманов Ю.Б. Радиофармпрепараты для сцинтиграфической визуализации очагов воспаления. Медицинская радиология и радиационная безопасность. 2007; 52 (4): 73-82.

14. Завадовская В.Д., Зоркальцев М.А., Килина О.Ю. и др. Сравнение возможностей трехфазной сцинтиграфии и сцинтиграфии с мечеными лейкоцитами в диагностике остеомиелита у пациентов с синдромом диабетической стопы. Радиология-практика. 2012; 1: 4-12.

15. Сазонова С.И., Варламова Н.В., Лишманов Ю.Б. Использование меченных 99mTc антибактериальных препаратов для сцинтиграфической диагностики инфекционного воспаления. Российский медицинский журнал. 2013; 2: 39-42.

16. Rubin R.H., Young L.S., Hansen W.P. et al. Specific and nonspecific imaging of localized Fisher immunotype 1 Pseudomonas aeruginosa infection with radiolabeled monoclonal antibody. J. Nucl. Med. 1988; 29 (5): 651-656.

17. Fischman A.J., Rubin R.H., White J.A. et al. Localization of Fc and Fab fragments of nonspecific polyclonal IgG at focal sites of inflammation. J. Nucl. Med. 1990; 31 (7): 1199-1205.

18. Morrel E.M., Tompkins R.G., Fischman A.J. et al. Imaging infections with antibodies. A quantitative autoradiographic analysis. J. Immunol. Meth. 1990; 130: 39-48.

19. Fischman A.J., Fucello A.J., Pellegrino-Gensey J.L. et al. Effect of carbohydrate modification on the localization of human polyclonal IgG at focal sites of bacterial infection. J. Nucl. Med. 1992; 33 (7): 1378-1382.

20. Dams E.T.M., Oyen W.J.G., Boerman O.C. et al. Technetium-99m labeled tohuman immunoglobulin G through the nicotinyl hydrazine derivative: a clinical study. J. Nucl. Med. 1998; 39 (1): 119-124.

21. Oyen W.J.G., Claessens R.A., van der Meer J.W.M. et al. Indium-111-labeled human nonspecific immunoglobulin G: a new radiopharmaceutical for imaging infectious and inflammatory foci. Clin. Infect. Dis. 1992; 14: 1110-1118.

22. Buscombe J.R., Oyen W.J.G., Grant A. et al. Indium-111-labeled human polyclonal immunoglobulin: identifying focal infection in patients positive for human immunodeficiency virus (HIV). J. Nucl. Med. 1993; 34 (10): 1621-1625.

23. Mairal L., Lima P.D., Martin C.J. et al. Simultaneous administration of 111In-human immunoglobulin and 99mTc-HMPAO labelled leukocytes in inflammatory bowel disease. Eur. J. Nucl. Med. 1995; 22: 664-670.

24. Nijhof M.W., Oyen W.J.G., van Kampen A. et al. Evaluation of infections of the locomotor system with indium-111-labeled human IgG scintigraphy. J. Nucl. Med. 1997; 38 (8): 1300-1305.

25. Dams E.T.M., Corstens F.H.M. Lessons for medicine and nuclear medicine research. Eur. J. Nucl. Med. 1999; 26: 311-313.

26. Boerman O.C., Storm G., Oyen W.J.G. et al. Sterically stabilized liposomes labeled with Indium-111 to image focal infection. J. Nucl. Med. 1995; 36 (9): 1639-1644.

27. Laverman P., Dams E.T.M., Oyen, W.J.G. et al. A novel method to label liposomes with 99mTc by the hydrazine nicotinyl derivative. J. Nucl. Med. 1999; 40 (1): 192-197.

28. Dams E.T.M., Oyen W.J.G., Boerman, O.C. et al. 99mTc-PEG liposomes for the scintigraphic detection of infection and inflammation: clinical evaluation. J. Nucl. Med. 2000; 41 (4): 622-630.

29. Brouwers A.H., de Jong D.J., Dams E.T.M. et al. Tc-99m-PEG-liposomes for the evaluation of colitis in Crohn's disease. J. Drug Targeting. 2000; 8 (4): 225-233.

30. Davina K. Hughes Nuclear Medicine and Infection Detection: The Relative Effectiveness of Imaging with 111In-Oxine-, 99mTc-HMPAO-, and 99mTc-Stannous Fluoride Colloid-Labeled Leukocytes and with 67Ga-Citrate. J. Nucl. Med. Technol. 2003; 31: 196-201.

31. Datz F.L., Thorne D.A. Effect of chronicity of infection on the sensitivity of the In-111-labeled leukocyte scan. Am. J. Roentgenol. 1986; 147: 809-812.

32. Datz F.L. Indium-111-labeled leukocytes for the detection of infection: current status. Semin. Nucl. Med. 1994; 24: 92-109.

33. Mc Afee J.G., Thakur M.L. Survey of radioactive agents for the in vitro labeling of phagocytic leucocytes. I Soluble agents. II Particles. J. Nucl. Med. 1976; 17(6): 480-492.

34. Peters A.M., Osman S., Henderson B.L. et al. Clinical experience with 99mTc-hexamethylpropilene-amineoxime for labeling leucocytes and imaging inflammation. Lancet. 1986; 198: 946-949.

35. Vinjamuri S., Hall A.V., Solanki K.K. et al. Comparison of 99mTc-Infecton imaging with radiolabelled white-cell imaging in the evaluation of bacterial infection. Lancet. 1996; 347: 233-235.

36. Britton K., Vinjamuri S., Hall A.V. et al. Clinical evaluation of 99ТТС infecton for the localization of bacterial infection. Eur. J. Nucl. Med. 1997; 24: 553-556.

37. Hall A.V., Solanki K.K., Vinjamuri S. et al. Evaluation of the efficacy of 99mTc-Infecton, a novel agent detecting sites of infection. J. Clin. Pathol. 1998; 51: 215-219.

38. Bennink R., Peeters M., D'Haens G. et al. Tc-99m HMPAO white blood cell scintigraphy in the assessment of the extent and severity of an acute exacerbation of ulcerative colitis. Clin. Nucl. Med., 2001; 26: 99-104.

39. Lange J.M.A., Boucher C.A.B., Hollak C.E.M. et al. Failure of zidovudine prophylaxis after accidental exposure to HIV-1. N. Eng. J. Med. 1990; 323: 915-916.

40. Becker W., Saptogino A., Wolf F The single late Tc-99m granulocyte antibody scan in inflammatory diseases. Nucl. Med. Commun. 1992; 13: 186-192.

41. Hasler P.H., Novak-Hofer I., Blauenstein P., Schubiger P.A. The in vivo binding behaviour of an I-123 labelled antigranulocytes antibody (Granuloszint). Prog. Clin. Biol. Res. 1990; 355: 299-309.

42. Barron B., Hanna C., Passalaqua A.M. et al. Rapid diagnostic imaging of acute, nonclassic appendicitis by leukoscintigraphy with sulesomab, a technetium-99m- labeled antigranulocyte antibody Fab'fragment. Surgery. 1999; 125: 288-296.

43. Thakur M.L., Marcus C.S., Henneman P. et al. Imaging inflammatory diseases with neutrophil-specific technetium-99m-labeled monoclonal antibody anti-SSEA-1. J. Nucl. Med. 1996; 37 (11): 1789-1795.

44. Kipper S.L., Rypins E.B., Evans D.G. et al. Neutrophil-specific 99mTc-labeled anti-CD15 monoclonal antibody imaging for diagnosis of equivocal appendicitis. J. Nucl. Med. 2000; 41 (3): 449-455.

45. Becker W., Borst U., Fischbach W. et al. Kinetic data of in vivo labeled granulocytes in humans with a murine Tc-99m-labelled monoclonal antibody. Eur. J. Nucl. Med. 1989; 15: 361-366.

46. Becker W., Goldenberg D.M., Wolf F The use of monoclonal antibodies and antibody fragments in the imaging of infectious lesions. Semin. Nucl. Med. 1994; 24 (2): 142-153.

47. Papos M., Nagy F., Narai G. et al. Anti-granulocyte immunoscintigraphy and [99mTc]hexamethylpropyleneamine-oxime-labeled leukocyte scintigraphy in inflammatory bowel disease. Dig. Dis. Sci. 1996; 41: 412-420.

48. Segarra I., Roca M., Baliellas L. et al. Granulocyte-specific monoclonal antibody technetium-99m-BW 250/183 and indium-111 oxine-labelled leukocyte scintigraphy in inflammatory bowel disease. Eur. J. Nucl. Med. 1991; 18: 715-719.

49. Fischman A.J., Pike M.C., Kroon D. et al. Imaging focal sites of bacterial infection in rats with indium-111-labeled chemotactic peptid analogs. J. Nucl. Med. 1991; 32 (3): 483-491.

50. Babich J.W., Graham W., Barrow S.A. et al. Technetium-99m-labeled chemotactic peptides: comparison with indium 111-labeled white blood cells for localizing acute bacterial infection in the rabbit. J. Nucl. Med. 1993; 34 (12): 2176-2181.

51. Fischman A.J., Rauh D., Solomon H. et al. In vivo bioactivity and biodistribution of chemotactic peptide analogs in nonhuman primates. J. Nucl. Med. 1993; 34 (12): 2130-2134.

52. Pollak A., Goodbody A.E., Ballinger J.R. Imaging inflammation with 99mTc-labelled chemotactic peptides: analogues with reduced neutropenia. Nucl. Med. Commun. 1996; 17: 132-135.

53. Toda A., Yokomizo T., Shimizu T. Leukotriene B4 receptors. Prostaglandins Other Lipid Mediat. 2002; 68 (69): 575-585.

54. Kontoyiannis D.P., Bodey G.P. Invasive aspergillosis in 2002: an update. Eur. J. Clin. Microbiol. Infect. Dis. 2002; 21: 161-172.

55. van Eerd J.E.M., Rennen H.J.J., Oyen W.J.G. et al. Scintigraphic Detection of Pulmonary Aspergillosis in Rabbits with a Radiolabeled Leukotriene B4 Antagonist. J. Nucl. Med. 2004; 45 (10): 1747-1753.

56. van der Laken C.J., Boerman O.C., Oyen W.J.G., van de Ven M.T.P. et al. Imaging of infection in rabbits with radioiodinated interleukin-1 (a and b), its receptor antagonist and a chemotactic peptide: a comparative study. Eur. J. Nucl. Med. 1998; 25: 347-352.

57. Gross M.D., Shapiro B., Fig L.M. et al. Imaging of human infection with 131l-labeled recombinant human interleukin-8. J. Nucl. Med. 2001; 42 (11): 1656-1659.

58. Bleeker-Rovers C.P., Rennen H.J., Boerman O.C. et al. 99mTc-labeled interleukin 8 for the scintigraphic detection of infection and inflammation: first clinical evaluation. J. Nucl. Med. 2007; 48 (3): 337-343.

59. Bounds S.J., Walters J.D., Nakkulka R.J. Fluoroquinolone transport by human monocytes: characterization and 74. comparison to other cells of myeloid lineage. Antimicrob. Agents Chemother. 2000; 44: 2609-2614.

60. Britton K.E., Wareham D.W., Das S.S. et al. Imaging bacterial infection with 99mTc-ciprofloxacin (Infection). J. Clin. Pathol. 2002; 55 (9): 817-823.

61. Durack D.T., Lukes A.S., Bright D.K. et al. New criteria for diagnosis of infective endocarditis: utilization of specific echocardiographic findings. Am. J. Med. 1994; 96: 200-209.

62. Sonmezoglu K., Sonmezoglu M., Halac M. et al. Usefulness of 99mTc-ciprofloxacin (Infection) scan in diagnosis of chronic orthopedic infections: comparative study with 78. 99mTc-HMPAO leukocyte scintigraphy. J. Nucl. Med., 2001; 42 (4): 567-574.

63. Fischman A.J., Livni E., Babich J.W. et al. Pharmacokinetics of [18F]Fleroxacin in patients with acute exacerbations of chronic bronchitis and complicated urinary tract infection studied by positron emission tomography. Antimicrob. Agents Chemother. 1996; 40 (3): 659-664.

64. Sugawara Y., Braun D.K., Kison P.V. et al. Rapid detection of human infections with fluorine-18 fluorinedeoxyglucose and positron emission tomography: preliminary results. Eur. J. Nucl. Med. 1998; 25 (9): 1238-1243. 82.

65. Sugawara Y., Gutowski T.D., Fisher S.J. et al. Uptake of positron emission tomography tracers in experimental bacterial infections: a comparative biodistribution study of radiolabeled FDG, thymidine, L-methionine, 67Ga-citrate and 125I-HSA. Eur. J. Nucl. Med. 1999; 26 (4): 333-341.

66. Mortelmans J., De Caestecker J., Maes A. et al. Diagnostic role of whole body FDG PET in patients with fever of unknown origin (FUO). J. Nucl. Med. 1990; 40 (Suppl. 5): 201.

67. Yamada S., Kubota K., Kubota R. et al. High accumulation of fluorine-18-fluorodeoxyglycose in turpentine-induced inflammatory tissue. J. Nucl. Med. 1995; 36 (7): 1301-1306.

68. Pellegrino D., Bonab A.A., Dragotakes S.C. et al. Inflammation and Infection: Imaging properties of 18F-FDG-labeled white blood cells versus 18F-FDG. J. Nucl. Med. 2005; 46 (9): 1522-1530.

69. Guhlmann A., Brecht K.D., Suger G. et al. Fluorine-18- FDG PET and technetium-99m antigranulocyte scintigraphy in chronic osteomyelitis. J. Nucl. Med. 1998; 39 (12): 2145-2152.

70. Palestro C.J. The current role of gallium imaging in infection. Semin. Nucl. Med. 1994; 24: 128-141.

71. Lavender J.P., Lowe J., Barker J.R. et al. Gallium 67 citrate scanning in neoplastic and inflammatory lesions. Br. J. Radiol. 1971; 44: 361-366.

72. Ito Y., Okuyama S., Awano T. et al. Diagnostic evaluation of Ga-67 scanning of lung cancer and other diseases. Radiology. 1971; 101: 355-362.

73. Куражов А.П., Завадовская В.Д., Чойнзонов Е.Л. и др. Возможности использования неспецифичных туморотропных индикаторов 99mTc-МИБИ, 67Ga-цитрата и 199Tl-хлорида для дифференциальной диагностики злокачественных опухолей. Сибирский онкологический журнал. 2012; 5 (53): 5-11.

74. Staab E.V., McCartney W.H. Role of Gallium 67 in inflammatory disease. Semin. Nucl. Med. 1978; 8: 219-234.

75. Bartholoma D., Louie A.S., Valliant J.F., Zubieta J. Technetium and Gallium Derived Radiopharmaceuticals: Comparing and Contrasting the Chemistry of Two Important Radiometals for the Molecular Imaging Era. Chem. Rev. 2010; 110: 2903-2920.

76. Green M.A., Welch M.J. Gallium radiopharmaceutical chemistry. Int. J. Rad. Appl. Instrum. 1989; 16: 435-438.

77. Harris W.R., Pecoraro V.L. Thermodynamic binding constants for gallium transferrin. Biochem J. 1983; 22: 292-299.

78. Martinez J.L., Delgado-Iribarren A., Baquero F. Mechanisms of iron acquisition and bacterial virulence. FEMS Microbiol. Rev. 1990; 75: 45-56.

79. Moerlein S.M., Welch M.J. The chemistry of gallium and indium as related to radiopharmaceutical production. Int. J. Nucl. Med. Biol. 1981; 8: 277-287.

80. Hartman R.E., Hayes R.L. The binding of gallium by blood serum. J. Pharmacol. Exp. Ther. 1969; 168: 193-198.

81. Gunasekera S.W., King L.J., Lavender P.J. The behavior of tracer gallium-67 towards serum proteins. Clin. Chim. Acta. 1972; 39: 401-406.

82. Наrа T. On the binding of gallium to transferrin. Int. J. Nucl. Med. Biol. 1974; 1: 152-154.

83. Larson S.M., Allen D.R., Rasey J.S., Grunbaum Z. Kinetics of binding of carrier-free Ga-67 to human transferrin. J. Nucl. Med. 1978; 19 (11): 1245-1249.

84. Hoffer R. Gallium: mechanisms. J. Nucl. Med. 1980; 21 (3): 282-285.

85. Vallabhajosula S.R., Harwig J.F., Siemsen J.K., Wolf W. Radio gallium localization in tumors: blood binding and transport and the role of transferrin. J. Nucl. Med. 1980; 21 (5): 650-656.

86. Larson S.M., Rasey J.S., Allen D.R., Nelson N.J. A transferrin-mediated uptake of gallium-67 by EMT-6 sarcoma. I. Studies in tissue culture. J. Nucl. Med. 1979; 20 (8): 837-842.

87. Gelrud L.G., Arsenau J.C., Milder M.S. The kinetics of 67Ga incorporation into inflammatory lesions: experimental and clinical studies. J. Lab. Clin. Med. 1974; 83: 489-495.

88. Ando A., Nitta K., Ando I. et al. Mechanism of gallium 67 accumulation in inflammatory tissue. Eur. J. Nucl. Med. 1990; 17: 21-27.

89. Weiner R., Hoffer P.B., Thakur M.L. Lactoferrin: Its role as a Ga-67 binding protein in polymorphonuclear leukocytes. J. Nucl. Med. 1981; 22 (1): 32-37.

90. Bernstein L.R. Mechanisms of therapeutic activity for gallium. Pharmacol. Rev. 1998; 50: 665-682.

91. Love C., Palestro C.J. Radionuclide Imaging of Infection. J. Nucl. Med. Technol. 2004; 32: 47-57.

92. Tsan M.F. Mechanism of gallium-67 accumulation in inflammatory lesions. J. Nucl. Med. 1985; 26 (1): 88-92.

93. Weiner R. The role of transferrin and other receptors in the mechanism of 67Ga localization. Int. J. Rad. Appl. Instrum. 1990; 17: 141-149.

94. Audi G., Bersillon O., Blachot J.A. et al. The Nubase evaluation of nuclear and decay properties. Nucl. Phys. A. 2003; 729 (1): 3-128.

95. Hayes R.L., Byrd B.L., Rafter J., Carlton J.E. The Effect of Scandium on the Tissue Distribution of Ga-67 in Normal and Tumor-Bearing Rodents. J. Nucl. Med. 1980; 21 (4): 361-365.

96. Hayes R.L., Edwards C.L. The Effect of Stable Scandium on Red Blood Cells and on the Retention and Excretion of 67Ga in Humans. South. Med. J. 1973; 66 (12): 1339-1340.

97. Bruner H.D., Hayes R.L., Perkinson J.D. A study of gallium-72-X. Preliminary data on gallium-67. Radiology. 1953; 61: 602-603.

98. Kriegel H. Biokinetics and metabolism of radio gallium. Nucl. Med. 1984; 23: 53-57.

99. Oster Z.H., Som P., Sacker D.F., Atkins H.L. The Effects of Deferoxamine Mesylate on Gallium-67 Distribution in Normal and Abscess-Bearing Animals: Concise Communication. J. Nucl. Med. 1980; 21(5): 421-425.


Для цитирования:


Лунёв А.С., Лысенко Н.П., Петросова К.А. Сравнительная характеристика радиофармацевтических препаратов для визуализации воспалительных и инфекционных процессов методом эмиссионной томографии. Медицинская визуализация. 2015;(1):83-93.

For citation:


Lunyov A.S., Lysenko N.P., Petrosova K.A. Comparative Analysis of Radiopharmaceuticals for Imaging of Inflammation and Infection using Emission Tomography. Medical Visualization. 2015;(1):83-93. (In Russ.)

Просмотров: 302


ISSN 1607-0763 (Print)
ISSN 2408-9516 (Online)