Preview

Medical Visualization

Advanced search

Complex Contrast-Enhanced MR-Angiographic and MR-Tomographic Diagnosis of Carotid Atherosclerotic Stenosis in Patients with Extensive Atherosclerosis

Abstract

Aim. To evaluate the possibility of simultaneous magnetic resonance angiography of carotid arteries and contrast-enhanced magnetic resonance imaging of carotid atherosclerotic plaques. Material and methods. 24 persons entered in research: 16 (66.7%) patients with extensive atherosclerosis of aorta and large arteries and in 8 (33.3%) control persons. Using four-channel quadratur phase-array coil for head studies the brain MRI, MR-angiography of carotid arteries and MR-tomography of carotid atherosclerotic plaques were carried out using contrast enhancement with 0,5M cyclomang (Mn-diaminocyclohexanetetraacetate) solution. The angiography employed 3D GR FFE fast gradient echo protocol (TR/TE/FA/ST = 10 ms / 2.7ms / 20°/ 1.5 mm). MRI of carotid arteries used the T1-w.spin-echo scanning with TR = 500-700 ms, TE = 10 ms, with slices as thin as 1-3 mm, matrix 256 x 256, and voxel as small as 0.2 x x 0.2 x 2 mm. Results. The mean transit time for the paramagnetic contrast passage through brain haemispheres was in healthy control persons as short as MTT = 4.23 ± 0.14 s for the left and MTT = 4.27 ± 0.15 s for the right. The MTT in patients with single-side stenosis was on the involved side as long as 4.89 ± 0.23 s, whereas on the intact side 4.56 ± 0.19 s (p > 0.05). In bilateral stenosis the MTT was 4.98 ± 0.21 s and 5.01 ± 0.16 s (p > 0.05) for the left and right sides respectively. In all cases of aherosclerotic stenoses the contrast-enhanced MRA with cyclomang provided the correct diagnosis of both location and extent of the stenosis. The degree of stenosis calculated for the MR-angiography correlated significantly with the data of ultrasonic study calculated using ECST technique both for monolateral (r = 0.87, p < 0.05) and bilateral (r = 0. 85, p < 0.05) stenoses. High-risk inhomogenous plaques with high lipid content demonstrated high indices of enhancement on contrast-enhanced MRI scans: IE = 1.26 ± 0.07, whereas in dense fibrous avascular plaques IE = 1.09 ± 0.04 (p < 0.05), providing efficient detection of risk plaques. The entire time of the study did last for as long as 41 ± 5 min when including time-of-flight protocol of angiography and 29 ± 5 min without it. Conclusion. Thus the contrast-enhanced MRA and MRI of carotid plaques with manganese paramagnetic complex can be carried out simultaneously as a single study using four-channel quadratur phase-array coil for head studies.

About the Authors

Vladimir Yurevich Usov
Tomsk Institute of Cardiology
Russian Federation


Maxim Lvovich Belyanin
National Research Tomsk polytechnic university
Russian Federation


Eugenia Eduardovna Bobrikova
Tomsk Institute of Cardiology
Russian Federation


Aleksandra Sergeevna Maximova
Tomsk Institute of Cardiology
Russian Federation


Nikolay Lvovich Shimanovsky
N.I. Pirogov Russian National research medical University
Russian Federation


Oleg Yurievich Borodin
Tomsk Institute of Cardiology; Tomsk Regional Oncologic Center
Russian Federation


Tatyana Viktorovna Sokolova
Tomsk Institute of Cardiology
Russian Federation


Mikhail Pavlovich Plotnikov
Tomsk Institute of Cardiology
Russian Federation


Vladimir Mitrofanovich Shipulin
Tomsk Institute of Cardiology
Russian Federation


References

1. Покровский А.В., Белоярцев Д.Ф., Адырхаев З.А. и др. Влияет ли способ каротидной реконструкции на непосредственные результаты вмешательства. Ангиология и сосудистая хирургия. 2012; 18 (3): 81-91.

2. Кармазановский Г.Г., Степанова Ю.А., Аскерова Н.Н. История развития контрастного усиления при ультразвуковом исследовании. Медицинская визуализация. 2015; 2: 110-119.

3. Засорин С.В., Куликов В.П., Карпенко А.А. Ультразвуковая оценка каротидных стенозов: методы, возможности и ограничения. Ангиология и сосудистая хирургия. 2012; 18 (3): 33-42.

4. Watanabe Y., Nagayama M. MR plaque imaging of the carotid artery. Neuroradiology. 2010; 52 (4): 253-274.

5. Brobeck B.R., Forero N.P., Romero J.M. Practical noninvasive neurovascular imaging of the neck arteries in patients with stroke, transient ischemic attack, and suspected arterial disease that may lead to ischemia, infarction or flow abnormalities. Semin. Ultrasound CT MR. 2006; 27 (3): 177-193.

6. Kribben A., Witzke O., Hillen U. et al. Nephrogenic systemic fibrosis: pathogenesis, diagnosis, and therapy. J. Am. Coll. Cardiol. 2009; 53:1621-1628.

7. Do C., Barnes J.L., Tan C., Wagner B. Type of MRI contrast: tissue gadolinium and fibrosis. Am. J. Physiol. Renal. Physiol. 2014; 307 (7): 844 -855.

8. Шимановский П.Л., Науменко В.Ю., Акопджанов А.Г. и др. Применение суперпарамагнитных частиц сложного оксида железа для магнитно-резонансного контрастирования. Нанотехника. 2009; 20: 64-69.

9. Шимановский Н.Л., Науменко В.Ю., Акопджанов А.Г. Получение устойчивого коллоидного раствора на основе наночастиц сложного оксида железа для создания магнитно-резонансного контрастного средства. Вестник Российского государственного медицинского университета. 2011; 2: 62-67.

10. Walker J.P., Nosova E., Sigovan M. et al. Ferumoxytol enhanced magnetic resonance angiography is a feasible method for the clinical evaluation of lower-extremity arterial diasease. Ann. Vasc. Surg. 2015; 29 (1): 63-68.

11. Усов В.Ю., Белянин М.Л., Безлепкин А.И. и др. Исследование комплекса Mn-транс-1,2-диамино-циклогексан-N,N,N',N'- тетраацетата (цикломанга) в качестве парамагнитного контрастного препарата для магнитно-резонансной томографии. Экспериментальная и клиническая фармакология. 2013; 76 (10): 32-38.

12. Saam T., Cai J., Ma L. et al. Comparison of symptomatic and asymptomatic atherosclerotic carotid plaque features with in vivo MR imaging. Radiology. 2006; 240: 464-472.

13. Наркевич Б.Я., Ширяев С.В. Методологические принципы радионуклидной терапии. Медицинская радиология и радиационная безопасность. 2004; 49 (5): 35-44.

14. Усов В.Ю., Шелковникова Т.А., Ханеев В.Б. и др. Синдромы церебрального накопления контраста при МР-томографии у пациентов с острым мозговым инсультом и прогностическое значение высокодозного парамагнитного контрастирования. Радиология-практика. 2010; 4: 4-19.

15. Арутюнов А.И., Корниенко В.Н. Тотальная церебральная ангиография. М.: Медицина, 1971. 167 с.

16. Бобрикова Е.Э., Щербань Н.В., Ханеев В.Б. и др. Оценка состояния атеросклеротических бляшек брахиоцефальных артерий средствами высокоразрешающей контрастированной МРТ: взаимосвязь с ишемическим повреждением головного мозга. Медицинская визуализация. 2013; 1: 26-32.

17. Skjold A., Amundsen B.H., Wiseth R. et al. Manganese dipiridoxyl-diphosphate as a viability marker in patients with myocardial infarction. J. Magn. Reson. Imaging. 2007; 26 (3): 720-727.

18. Botsikas D., Terraz S., Vinet L. et al. Pancreatic magnetic resonance imaging after manganese injection distinguishes type 2 diabetic and normoglycemic patients. Islets. 2012; 4 (3): 243-248.

19. Шимановский Н.Л. Безопасность йодсодержащих рентгенконтрастных средств в свете новых рекомендаций международных ассоциаций экспертов и клиницистов. Российский электронный журнал лучевой диагностики . 2012; 2 (1): 12-19.


Review

For citations:


Usov V.Yu., Belyanin M.L., Bobrikova E.E., Maximova A.S., Shimanovsky N.L., Borodin O.Yu., Sokolova T.V., Plotnikov M.P., Shipulin V.M. Complex Contrast-Enhanced MR-Angiographic and MR-Tomographic Diagnosis of Carotid Atherosclerotic Stenosis in Patients with Extensive Atherosclerosis. Medical Visualization. 2015;(6):16-24. (In Russ.)

Views: 956


ISSN 1607-0763 (Print)
ISSN 2408-9516 (Online)