Preview

Medical Visualization

Advanced search

The Prognostic Value of Bone Density Measured in Hounsfield Units in Relation to Low Energy Vertebra Fracture Prediction

Abstract

Computed tomography (CT) can be used to accurately determine bone density in Hounsfield units (HU), the use of CT as a predictive tool has not been conclusively demonstrated in relation to low energy vertebra compression fracture (VCF). The objective: to define the prognostic value of bone density measured during CT investigation in relation to VCF. Materials and methods. One hundred consecutive patients undergoing CT scans were enrolled in this study. Bone density measurements were obtained at the level LII or LIII from the cancellous portion of the vertebral body in the mid-sagittal, mid-coronal and axial planes. The presence of a single-level or multi-level VCF was identified by CT. Multilevel degenerative changes were characterized and recorded. Logistic regression was utilized to assess the relationship between the variables of bone density in HU, single - or multi-level VCF and the presence of degenerative changes. Results. HU were found to have a strong correlation to the risk of VCF. HU of less than 101 were associated with a significant increase in the rate of VCF, whereas HU of less than 82 were associated with a significant increase in the rate of multi-level VCF. Hypertrophic degenerative changes were found to be associated with a decreased rate of VCF. Conclusion. CT data can accurately define the risk of VCF and therefore presents a useful clinical tool to support the need for prophylactic medical therapies for osteoporosis or to provide information useful in counseling patients at risk for VCF.

About the Authors

Andrey Evgenievich Bokov
Privolzhsky Federal Research Center
Russian Federation


Sergey Gennadievich Mlyavykh
Privolzhsky Federal Research Center
Russian Federation


Alexander Yakovlevich Aleynik
Privolzhsky Federal Research Center
Russian Federation


Marina Vyacheslavovna Rasteryaeva
Privolzhsky Federal Research Center
Russian Federation


Marina Alexandrovna Kutlaeva
Privolzhsky Federal Research Center
Russian Federation


References

1. Felsenberg D., Silman A.J., Lunt M. et al. Incidence of vertebral fracture in Europe: results from the European Prospective Osteoporosis Study (EPOS). J. Bone Miner Res. 2002; 17: 716-724.

2. Johnell O., Kanis J. Epidemiology of osteoporotic fractures. Osteoporosis Int. 2005; 16: S3-S7.

3. Hodsman A.B., Leslie W.D., Tsang J.F. et al. 10-year probability of recurrent fractures following wrist and other osteoporotic fractures in a large clinical cohort: an analysis from the Manitoba Bone Density Program. Arch. Intern. Med. 2008; 168: 2261-2267.

4. LaFleur J., McAdam-Marx C., Kirkness C. et al. Clinical risk factors for fracture in postmenopausal osteoporotic women: a review of the recent literature. Ann. Pharmacolther. 2008; 42: 375-386.

5. McLeod K.M., Johnson C.S. Identifying women with low bone mass: a systematic review of screening tools. Geriatr Nurse. 2009; 30: 164-173.

6. Schlaich C., Minne H.W., Bruckner T. et al. Reduced pulmonary function in patients with spinal osteoporotic fractures. Osteoporosis Int. 1998; 8: 261-267.

7. Pluijm S.M., Tromp A.M., Smit J.H. et al. Consequences of vertebral deformities in older men and women. J. Bone Miner. Res. 2000; 15: 1564-1572.

8. Black D.M., Steinbuch M., Palermo L. et al. An assessment tool for predicting fracture risk in postmenopausal women. Osteoporosis Int. 2001; 12: 519-528.

9. Kanis J.A., Johnell O., Oden A. et al. FRAX and the assessment of fracture probability in men and women from the UK. Osteoporosis Int. 2008; 19: 385-397.

10. Yi Y., Hwang B., Son H. et al. Low bone mineral density, but not epidural steroid injection, is associated with fracture in postmenopausal women with low back pain. Pain Physician. 2012; 15: 441-449.

11. Mull R.T. Mass estimates by computed tomography: physical density from CT numbers. Am. J. Roentgenol. 1984; 143: 1101-1104.

12. Naganathan V., Jones G., Nash P. et al. Vertebral fracture risk with long-term corticosteroid therapy: prevalence and relation to age, bone density, and corticosteroid use. Arch. Intern. Med. 2000; 160: 2917-2922.

13. Rehman Q., Lang T., Modin G. et al. Quantitative computed tomography of the lumbar spine, not dual X-Ray absorptiometry, is an independent predictor of prevalent vertebral fractures in postmenopausal women with osteopenia receiving long-term glucocorticoid and hormone-replacement therapy. Arthr. Rheum. 2002; 46: 1292-1297.

14. Merheb J., Van Assche N., Coucke W. et al. Relationship between cortical bone thickness or computerized tomography-derived bone density values and implant stability. Clin. Oral. Implants Res. 2010; 21: 612-617.

15. Hiasa K., Abe Y., Okazaki Y. et al. Preoperative computed tomography-derived bone densities in Hounsfield units at implant sites acquired primary stability. ISRN Dent. 2011; 2011: 678-729.

16. Pickhardt P.J., Lee L.J., del Rio A.M. et al. Simultaneous screening for osteoporosis at CT colonography: bone mineral density assessment using MDCT attenuation techniques compared with the DXA reference standard. J. Bone Miner. Res. 2011; 26: 2194-2203.

17. Genant H.K., Wu C.Y., Vankuijk C.,et al. Vertebral fracture assessment using a semiquantitative technique. J. Bone Miner. Res. 1993; 8: 1137-1148.

18. Marshall D., Johnell O., Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. Br. Med. J. 1996; 312: 1254-1259.

19. Bouxsein M.L., Palermo L., Yeung C. et al. Digital X-ray radiogrammetry predicts hip, wrist and vertebral fracture risks in elderly women. A prospective analysis from the study of osteoporotic fractures. Osteoporosis Int. 2002; 13: 358-365.

20. Lewis C.E., Ewing S.K., Taylor B.C. et al. Predictors of non-spine fracture in elderly men: the MrOS study. J. Bone Miner. Res. 2007; 22: 211-219.

21. Small R.E. Uses and Limitations of Bone Mineral Density Measurements in the Management of Osteoporosis. Med. Gen. Med. 2005; 7: 3.

22. Lewiecki E.M., Laster A.J. Clinical review: clinical applications of vertebral fracture assessment by dualenergy X-ray absorptiometry. J. Clin. Endocrinol. Metab. 2006; 91: 4215-4222.

23. Vokes T.J., Gillen D.L. Using clinical risk factors and bone mineral density to determine who among patients undergoing bone densitometry should have vertebral fracture assessment. Osteoporosis Int. 2010; 21: 2083-2091.

24. Xu W., Perera S., Medich D. et al. Height Loss, Vertebral Fractures, and the Misclassification of Osteoporosis. Bone. 2011; 48: 307-311.

25. Tenne M., McGuigan F., Besjakov J. et al. Degenerative changes at the lumbar spine-implications for bone mineral density measurement in elderly women. Osteoporosis Int. 2013; 24: 1419-1428.

26. Liu G., Peacock M., Eilam O., et al. Effect of osteoarthritis in the lumbar spine and hip on bone mineral density and diagnosis of osteoporosis in elderly men and women. Osteoporosis Int. 1997; 7: 564-569.

27. Абдрахманова Ж.С. Костная денситометрия и компьютерная томография в оценке пороговых значений минеральной плотности тел позвонков как фактор риска их переломов: Автореф. дис.. канд. мед. наук. Томск, 2006. 19 c.

28. Pollintine P., Dolan P., Tobias J.H. et al. Intervertebral disc degeneration can lead to “stress-shielding” of the anterior vertebral body: a cause of osteoporotic vertebral fracture? Spine. 2004; 29: 774-782.


Review

For citations:


Bokov A.E., Mlyavykh S.G., Aleynik A.Ya., Rasteryaeva M.V., Kutlaeva M.A. The Prognostic Value of Bone Density Measured in Hounsfield Units in Relation to Low Energy Vertebra Fracture Prediction. Medical Visualization. 2015;(3):94-98. (In Russ.)

Views: 1548


ISSN 1607-0763 (Print)
ISSN 2408-9516 (Online)