Preview

Медицинская визуализация

Расширенный поиск

КТ-перфузия при опухолях поджелудочной железы

Полный текст:

Аннотация

Цель исследования: провести анализ литературных данных по использованию КТ-перфузии при опухолях поджелудочной железы, сравнить их с результатами собственных исследований и проанализировать полученные данные. Материал и методы. В поисковой системе “pub med” по ключевым словам “CT perfusion of pancreatic tumors” найдено 64 статьи. За период с января 2014 г. по январь 2015 г в Институте хирургии им. А.В. Вишневского выполнено 19 КТ-перфузионных исследований при кистозных и солидных опухолях поджелудочной железы с использованием низкодозового протокола исследования (80 кВ, 100-200 мАс). Постпроцессорная обработка выполнена с помощью модели максимального наклона и кривых плотность/время. Результаты. Показатели КТ-перфузии: для здоровой паренхимы - скорость кровотока (BF-blood flow) - 69,7 мл/100 г/мин, объем кровотока (BV-blood volume) - 25,6 мл/100 г. При протоковой аденокарциноме поджелудочной железы - BF - 15 мл/100 г/мин, BV - 3 мл/100 г. При нейроэндокринных опухолях - BF-202 мл/100 г/мин, BV - 24 мл/100 г. При микрокистозных цистаденомах - BF-56 мл/100 г/мин, BV-30 мл/100 г. Показатель TTP (time to peak) для здоровой железы составил 12 с, при аденокарциноме и кистозных опухолях этот показатель значительно повышается, при нейроэндокринных (гиперваскулярных) опухолях, наоборот, TTP снижается до 4-8 с. Заключение. КТ-перфузия может использоваться в дифференциальной диагностике опухолей поджелудочной железы, однако отсутствие единого протокола сканирования и множество математических моделей расчета перфузии не позволяют выделить стандартизированные критерии для той или иной опухоли. Перфузионные параметры остаются ориентировочными данными. Поэтому необходимо ее использование более широким кругом исследователей с участием большой когорты пациентов.

Об авторе

Ярослав Игоревич Нерестюк
ФГБУ “Институт хирургии им. А.В. Вишневского” Минздрава России
Россия


Список литературы

1. Sahani D.V., Samir A.E. Imaging of the Pancreas. In book: Abdominal Imaging. Set: Expert Radiology Series. Boston, Elsevier Inc, 2011: 691-704.

2. Bipat S., Phoa S.S., van Delden O.M. et al. Ultrasonography, computed tomography and magnetic resonance imaging for diagnosis and determining resectability of pancreatic adenocarcinoma: a meta-analysis. J. Comput. Assist. Tomogr. 2005; 29 (4): 438-445.

3. Schima W., Fugger R., Schober E. et al. Diagnosis and staging of pancreatic cancer: comparison of mangafodipir trisodium-enhanced MR imaging and contrast enhanced helical hydro-CT. Am. J. Roentgenol. 2002; 179: 717-724.

4. Ichikawa T., Erturk S.M., Sou H. et al. MDCT of pancreatic Adenocarcinoma: optimal imaging phases and Multiplaner Reformatted Imagin. Am. J. Roentgenol. 2006; 187 (6): 1513-1520.

5. Park H.S., Lee J.M., Choi H.K. et al. Preoperative evaluation of pancreatic cancer: comparison of gadolinium-enhanced dynamic MRI with MR cholangiopancreatography versus MDCT. J. Magn. Reson. Imaging. 2009; 30: 586-595.

6. Fidler J.L., Fletcher J.G., Reading C.C. et al. Preoperative detection of pancreatic insulinomas on multiphasic helical CT. Am. J. Roentgenol. 2003; 181: 775-780.

7. Boland G.W., O'Malley M.E., Saez M. et al. Pancreatic-phase versus portal vein-phase helical CT of the pancreas: optimal temporal window for evaluation of pancreatic adenocarcinoma. Am. J. Roentgenol. 1999; 172: 605-608.

8. Imbriaco M., Megibow A.J., Ragozzino A. et al. Value of the single-phase technique in MDCT assessment of pancreatic tumors. Am. J. Roentgenol. 2005; 184: 1111-1117.

9. Graf O., Boland G.W., Warshaw A.L. et al. Arterial versus portal venous helical CT for revealing pancreatic adenocarcinoma: conspicuity of tumor and critical vascular anatomy. Am. J. Roentgenol. 1997; 169: 119-123.

10. Stafford-Johnson D.B., Francis I.R., Eckhauser F.E. et al. Dual-phase helical CT of nonfunctioning islet cell tumors. J. Comput. Assist. Tomogr. 1998; 22: 335-339.

11. D'Assignies G., Couvelard A., Bahrami S. et al. Pancreatic endocrine tumors: tumor blood flow assessed with perfusion CT reflects angiogenesis and correlates with prognostic factors. Radiology. 2009; 250: 407-416.

12. Delrue L., Blanckaert P., Mertens D. et al. Assessment of tumor vascularization in pancreatic adenocarcinoma using 128-slice perfusion computed tomography imaging. J. Comput. Assist. Tomogr. 2011; 35: 434-438.

13. Sharma J., Duque M., Saif M.W. Emerging therapies and latest development in the treatment of unresectable pancreatic neuroendocrine tumors: an update for clinicians. Therapeutic Adv. Gastroenterol. 2013; 6: 474-490.

14. Walker E.J., Ko A.H. Beyond first-line chemotherapy for advanced pancreatic cancer: An expanding array of therapeutic options? WJG. 2014; 20: 2224-2236.

15. Nakao A., Kasuya H., Sahin T.T. et al. A phase I dose-escalation clinical trial of intraoperative direct intratumoral injection of HF10 oncolytic virus in non-resectable patients with advanced pancreatic cancer. Cancer Gene Therapy. 2011; 18: 167-175.

16. Petralia G., Preda L., D'Andrea G. et al. CT perfusion in solid-body tumours. Part I: technical issues. Radiol. Med. 2010; 115: 843-857.

17. Petralia G., Preda L., D'Andrea G. et al. CT perfusion in solid-body tumours. Part I: Technical issues. La Radiologia Medica. 2010; 115: 843-857.

18. Delrue L., Blanckaert P., Mertens D. et al. Variability of CT contrast enhancement in the pancreas: a cause for concern? Pancreatology: official journal of the International Association of Pancreatology. 2011; 11: 588-594.

19. Delrue L., Blanckaert P., Mertens D. et al. Tissue perfusion in pathologies of the pancreas: assessment using 128-slice computed tomography. Abdom. Imaging. 2012; 37 (4): 595-601.

20. Xie Q., Wu J., Tang Y. et al. Whole-Organ CT Perfusion of the Pancreas: Impact of Iterative Reconstruction on Image Quality, Perfusion Parameters and Radiation Dose in 256-Slice CT-Preliminary Findings. PLoS ONE. 2013; 8 (11): 1-8.

21. Li H.O., Sun C., Xu Z.-d. et al. Low-dose whole organ CT perfusion of the pancreas: preliminary study. Abdom. Imaging. 2014; 39 (1): 40-47.

22. Grozinger G., Grozinger A., Horger M. The Role of Volume Perfusion CT in the Diagnosis of Pathologies of the Pancreas. Rofo. 2014; 186 (12): 1082-1093.

23. Miles K.A., Charnsangavej C., Lee F.T. et al. Application of CT in the investigation of angiogenesis in oncology. Acad. Radiol. 2000; 7: 840-850.

24. Miles K.A. Perfusion CT for the assessment of tumour vascularity: which protocol? Br. J. Radiol. 2003; 1 (Spec) (76): S36-S42.

25. Patlak C.S., Blasberg R.G., Fenstermacher J.D. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J. Cereb. Blood Flow. Metab. 1983; 3: 1-7.

26. Bronikowski T.A., Dawson C.A., Linehan J.H. Model-free deconvolution techniques for estimating vascular transport functions. Int. J. Bio-Med Comput. 1983; 14: 411-429.

27. Корниенко В.Н., Пронин И.Н., Пьяных О.С. и др. Исследование тканевой перфузии головного мозга методом компьютерной томографии. Медицинская визуализация. 2007; 2: 70-81.

28. Pandharipande P.V., Krinsky G.A., Rusinek H. et al. Perfusion imaging of the liver: current challenges and future goals. Radiology. 2005; 234: 661-673.

29. Kandel S., Kloeters C., Meyer H. et al. Whole-organ perfusion of the pancreas using dynamic volume CT in patients with primary pancreas carcinoma: acquisition technique, post-processing and initial results. Eur. Radiol. 2009; 19: 2641-2646.

30. Zamboni G.A., Bernardin L., Pozzi Mucelli R. Dynamic MDCT of the pancreas: is time-density curve morphology useful for the differential diagnosis of solid lesions: a preliminary report. Eur. J. Radiol. 2012; 81: 381-385.

31. Motosugi U., Ichikawa T., Sou H. et al. Multi-organ perfusion CT in the abdomen using a 320-detector row CT scanner: preliminary results of perfusion changes in the liver, spleen, and pancreas of cirrhotic patients. Eur. J. Radiol. 2012; 81: 2533-2537.

32. Kanda T., Yoshikawa T., Ohno Y. et al. Perfusion measurement of the whole upper abdomen of patients with and without liver diseases: initial experience with 320-detector row CT. Eur. J. Radiol. 2012; 81: 2470-2475.

33. Klauss M., Stiller W., Pahn G. et al. Dual-energy perfusion-CT of pancreatic adenocarcinoma. Eur. J. Radiol. 2013; 82: 208-214.

34. Nabavi D.G., Cenic A., Craen R.A. et al. CT assessment of cerebral perfusion: experimental validation and initial clinical experience. Radiology. 1999; 213: 141-149.

35. Goh V., Halligan S., Hugill J.A. et al. Quantitative colorectal cancer perfusion measurement using dynamic contrast-enhanced multidetector-row computed tomography: effect of acquisition time and implications for protocols. J. Comput. Assist. Tomogr. 2005; 29: 59-63.

36. Rumboldt Z., Al-Okaili R., Deveikis J.P. Perfusion CT for head and neck tumors: pilot study. Am. J. Neuroradiol. 2005; 26: 1178-1185.

37. Bellomi M., Petralia G., Sonzogni A. et al. CT perfusion for the monitoring of neoadjuvant chemotherapy and radiation therapy in rectal carcinoma: initial experience. Radiology. 2007; 244: 486-493.

38. Sahani D.V., Holalkere N.S., Mueller P.R., Zhu A.X. Advanced hepatocellular carcinoma: CT perfusion of liver and tumor tissue-initial experience. Radiology. 2007; 243: 736-743.

39. Kandel S., Meyer H., Hein R. et al. Comparison of free breathing versus breath-hold in perfusion imaging using dynamic volume CT. Insights Imaging. 2012; 3: 323-328.

40. Elliott J.T., Samkoe K.S., Gunn J.R. et al. Perfusion CT Estimates Photosensitizer Uptake and Biodistribution in a Rabbit Orthotopic Pancreatic Cancer Model: A Pilot Study. Acad. Radiol. 2015; 22 (5): 572-579.

41. Yao J.C., Phan A.T., Hess K. et al. Perfusion computed tomography as functional biomarker in randomized run-in study of bevacizumab and everolimus in well-differentiated neuroendocrine tumors. Pancreas. 2015; 44 (2); 190-197.

42. Xu J., Liang Z., Hao S. et al. Pancreatic adenocarcinoma: dynamic 64-slice helical CT with perfusion imaging. Abdom. Imaging. 2009; 34: 759-766.

43. Tsushima Y., Miyazaki M., Taketomi-Takahashi A. et al. Feasibility of measuring human pancreatic perfusion in vivo using imaging techniques. Pancreas. 2011; 40: 747-752.

44. Klauss M., Stiller W., Fritz F. et al. Computed tomography perfusion analysis of pancreatic carcinoma. J. Comput. Assist. Tomogr. 2012; 36: 237-242.

45. Park M.S., Klotz E., Kim M.J. et al. Perfusion CT: noninvasive surrogate marker for stratification of pancreatic cancer response to concurrent chemo- and radiation therapy. Radiology. 2009; 250: 110-117.

46. Buerke B., Heindel W., Wessling J. Differential diagnosis and radiological management of cystic pancreatic lesions. RoFo: Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin. 2010; 182: 852-860.

47. Lewis R.B., Lattin G.E. Jr., Paal E. Pancreatic endocrine tumors: radiologicclinicopathologic correlation. Radiographics: a review publication of the Radiological Society of North America. 2010; 30: 1445-1464.

48. Gallotti A., Johnston R.P., Bonaffini P.A. et al. Incidental neuroendocrine tumors of the pancreas: MDCT findings and features of malignancy. Am. J. Roentgenol. 2013; 200: 355-362.

49. Ng C.S., Charnsangavej C., Wei W. et al. Perfusion CT findings in patients with metastatic carcinoid tumors undergoing bevacizumab and interferon therapy. Am. J. Roentgenol. 2011; 196: 569-576.


Для цитирования:


Нерестюк Я.И. КТ-перфузия при опухолях поджелудочной железы. Медицинская визуализация. 2015;(3):57-67.

For citation:


Nerestyuk Y.I. CT Perfusion of Pancreatic Tumors. Medical Visualization. 2015;(3):57-67. (In Russ.)

Просмотров: 352


ISSN 1607-0763 (Print)
ISSN 2408-9516 (Online)