Calcification density on computed tomography depending on scanning parameters: phantom study
https://doi.org/10.24835/1607-0763-2020-4-119-132
Abstract
Purpose of research. The aim of the study is to evaluate changes in density, Agatston score, Volume and Mass scores of coronary calcium at different scanning parameters using phantom measurement.
Materials and methods. 8 1-ml insulin syringes filled with potassium hydroorthophosphate solution of different densities were used in the study. The syringes were placed at regular intervals into two phantoms: type 1 phantom – container filled with water; type 2 phantom – Chest Phantom N1 “LUNGMAN”. The phantoms were scanned with a Philips Ingenuity Elite CT 128 scanner using protocols with different voltages (80, 100, 120, 140 kV), amperage (27–45, 166, 330–400 mA), and slice thickness (0.625, 1, 2.5, 3 mm).
Results. Density and Agatston indexes were obtained at different scanning parameters (voltage, amperage, slice thickness) for different factors of calcification density in both phantoms. The results are presented as a table with mean density values, standard deviation (SD), Agatston score of coronary calcium, and scanning parameters.
Conclusion. The study demonstrates the influence of various scanning parameters on coronary artery calcium scoring results. The obtained information can be used in practice for more accurate quantification of coronary artery calcium, regardless of the scanning parameters.
About the Authors
A. E. NikolaevRussian Federation
Aleksandr E. Nikolaev – researcher of Department of quality of radiology
16/26, Raskovoy str., Moscow, 125124, Russian Federation
SPIN: 1320-1651
O. A. Korkunova
Russian Federation
Olga A. Korkunova – researcher of the Department of quality of radiology
16/26, Raskovoy str., Moscow, 125124, Russian Federation
SPIN: 6879-129
I. A. Blokhin
Russian Federation
Ivan A. Blokhin – researcher of Department of quality of radiology
16/26, Raskovoy str., Moscow, 125124, Russian Federation
SPIN: 3306-1387
A. V. Petraykin
Russian Federation
Alexey V. Petraykin – Cand. of Sci. (Med.), Docent, expert-radiologist, senior researcher
16/26, Raskovoy str., Moscow, 125124, Russian Federation
SPIN 6193-1656
M. V. Nikiforova
Russian Federation
Marina V. Nikiforova – resident
1, Ostrivityanova str., Moscow, 117997, Russian Federation
SPIN: 1086-5509
A. O. Gir’ko
Russian Federation
Aleksandr O. Gir’ko – resident
86, Enthusiasts hw., Moscow, 111123, Russian Federation
E. A. Dyagileva
Russian Federation
Elena A. Dyagileva – resident of Federal State Autonomous Educational Institution
8, b.2, Trubetskaya str., Moscow, 119991, Russian Federation
M. M. Suchilova
Russian Federation
Maria M. Suchilova – researcher of Department of quality of radiology
16/26, Raskovoy str., Moscow, 125124, Russian Federation
SPIN: 4922-1894
I. S. Gruzdev
Russian Federation
Ivan S. Gruzdev – resident
27, Bol'shaya Serpukhovskaia str., Moscow, 117997, Russian Federation
SPIN: 3350-0832
E. S. Pershina
Russian Federation
Ekaterina S. Pershina – Cand. od Sci. (Med.), radiologist, head of Radiology center
8, Leninsky Prospekt, 117049, Moscow, Russian Federation
SPIN: 7311-9276
A. Yu. Silin
Russian Federation
16/26, Raskovoy str., Moscow, 125124, Russian Federation
V. A. Gombolevskij
Russian Federation
Viktor A. Gombolevskij – Cand. od Sci. (Med.), Head of the Radiology Quality Development Division
16/26, Raskovoy str., Moscow, 125124, Russian Federation
SPIN: 6810-3279
S. P. Morozov
Russian Federation
Sergey P. Morozov – Doct. od Sci. (Med.), Professor, Director,
16/26, Raskovoy str., Moscow, 125124, Russian Federation
SPIN: 8542-1720
References
1. Greenland P., Blaha M.J., Budoff M.J., Erbel R., Watson K.E. Coronary calcium score and cardiovascular risk. J. Am. Coll. Cardiol. 2018; 72 (4): 434–447. https://doi.org/10.1016/j.jacc.2018.05.027
2. Detrano R., Guerci A.D., Carr J.J., Bild D.E., Burke G.,
3. Folsom A.R., Liu K., Shea S., Szklo M., Bluemke D.A., O'Leary D.H., Tracy R., Watson K., Wong N.D., Kronmal R.A. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N. Engl. J. Med. 2008; 358 (13): 1336–1345. https://doi.org/10.1056/NEJMoa072100
4. Shaw L.J., Raggi P., Callister T.Q., Berman D.S. Prognostic value of coronary artery calcium screening in asymptomatic smokers and non-smokers. Eur. Heart J. 2006; 27 (8): 968–975. https://doi.org/10.1093/eurheartj/ehi750
5. Eisen A., Tenenbaum A., Koren-Morag N., Tanne D., Shemesh J., Imazio M., Fisman E.Z., Motro M., Schwammen thal E., Adler Y. Calcification of the thoracic aorta as detected by spiral computed tomography among stable angina pectoris patients: association with cardiovascular events and death. Circulation. 2008; 118 (13): 1328–1334. https://doi.org/10.1161/CIRCULATIONAHA.107.712141
6. Pakdaman M.N., Rozanski A., Berman D.S. Incidental coronary calcifications on routine chest CT: Clinical implications. Trends Cardiovasc. Med. 2017; 27: 475–480. https://doi.org/10.1016/j.tcm.2017.04.004
7. Arcadi T., Maffei E., Sverzellati N., Mantini C., Guaricci A.I., Tedeschi C., Martini Ch., La Grutta L., Cademartiri F. Coronary artery calcium score on low-dose computed tomography for lung cancer screening. Wld J. Radiol. 2014; 286 (6): 381–387. https://doi.org/10.4329/wjr.v6.i6.381
8. Pershina E.S., Sinitsin V.E., Mershina E.A., Arkhipova I.M., Semitko S.P., Ivanov V.A. Non-invasive FFR derived from standard acquired coronary computed tomography angiography (CTA) datasets (FFRCT) for the diagnosis of myocardial ischemia in patients with coronary artery disease (CAD): first data of clinical use. Comparison with invasive measurement. Medical Visualization. 2018; 22 (2): 47–55. (In Russian) https://doi.org/10.24835/1607-0763-2018-2-47-55
9. Nikolaev A.E., Gombolevskiy V.A., Gonchar A.P., Shapiev A.N., Laypan A.S., Morozov S.P. Random findings on lung cancer screening by low-dose computed tomography. Tuberculosis and lung diseases. 2018; 96 (11): 60–68. (In Russian) https://doi.org/10.21292/2075-1230-2018-96-11-60-67
10. Nikolaev A.E., Shapiev A.N., Blokhin I.A., Ramazanova D.M.,
11. Shapieva A.N., Gombolevskij V.A., Nizovtsova L.A. New approaches for assessing coronary changes in multi-layer spiral computed tomography. Russian Journal of Cardiology. 2019; (12): 124–130. (In Russian) https://doi.org/10.15829/1560-4071-2019-12-124-130.
12. Agatson A.S., Janovitz W.R., Hildner F.J., Zusmer N.R., Viamonte M.Jr. Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J. Am. Coll. Cardiol. 1990; 15: 827–832. https://doi.org/10.1016/0735-1097(90)90282-t
13. Rumberger J.A., Brundage B.H., Rader D.J., Kondos G. Electron beam computed tomographic coronary calcium scanning: a review and guidelines for use in asymptomatic persons. Mayo Clin. Proc. 1999; 74: 243–252. https://doi.org/10.4065/74.3.243
14. Yoon H.C., Goldin J.G., Greaser L.E.(3rd), Sayre J., Fonarow G.C. Interscan variation in coronary artery calcium calcification in a large asymptomatic patient population. Am. J. Roengenol. 2000; 174: 803–809. https://doi.org/10.2214/ajr.174.3.1740803
15. Mayer C., Meyer M., Fink C., Schmidt B., Sedlmair M., Schoenberg S.O., Henzler T. Potential for radiation dose savings in abdominal and chest CT using automatic tube voltage selection in combination with automatic tube current modulation. Am. J. Roentgenol. 2014; 203 (2): 292–299.
16. Schauer D.A., Linton O.W. National Council on Radiation Protection and Measurements report shows substantial medical exposure increase. Radiology. 2009; 253 (2): 293–296. https://doi.org/10.1148/radiol.11102376
17. Sodickson A., Baeyens P.F., Andriole K.P., Prevedello L.M., Nawfel R.D., Hanson R., Khorasani R. Recurrent CT, cumulative radiation exposure, and associated radiationinduced cancer risks from CT of adults. Radiology. 2009; 251 (1): 175–184. https://doi.org/10.1148/radiol.2511081296
18. International Commission on Radiological Protection. Radiological protection in medicine: ICRP publication 105. Ann. ICRP. 2007; 37 (6): 1–63. https://doi.org/10.1016/j.icrp.2008.08.001
19. Rhee D., Kim S.-W., Moon Y.M., Kim J.K., Jeong D.H. Effects of the Difference in Tube Voltage of the CT Scanner on Dose Calculation. J. Korean Phys. Soc. 2015; 67 (1). https://doi.org/10.3938/jkps.67.123
20. McCollough C.H., Leng S., Yu L., Fletcher J.G. Dual- and multi-energy CT: principles, technical approaches, and clinical applications. Radiology. 2015; 276 (3): 637–653. https://doi.org/10.1148/radiol.2015142631
Review
For citations:
Nikolaev A.E., Korkunova O.A., Blokhin I.A., Petraykin A.V., Nikiforova M.V., Gir’ko A.O., Dyagileva E.A., Suchilova M.M., Gruzdev I.S., Pershina E.S., Silin A.Yu., Gombolevskij V.A., Morozov S.P. Calcification density on computed tomography depending on scanning parameters: phantom study. Medical Visualization. 2020;24(4):119-132. (In Russ.) https://doi.org/10.24835/1607-0763-2020-4-119-132