Comparison of two asynchronous QCT methods
https://doi.org/10.24835/1607-0763-2020-4-108-118
Abstract
Rationale. Quantitative CT (QCT) bone densitometry with asynchronous calibration not require a phantom during the scan procedure. Based on calibration data it converts X-ray density in HU to bone mineral density (BMD). Given the large number of CT studies performed on patients at risk of osteoporosis, there is a need for a hands-on method capable of assessing BMD in a short period of time without tailored software or protocols.
Goal. To develop a method for QCT bone densitometry using an PHK (PHantom Kalium), to compare the volume BMD measurements with the QCT data with asynchronous calibration provided by software from a reputable developer.
Methods. The studies were performed at 64-slice CT unit with body scanning parameters. The BMD was measured using two techniques: 1) QCT with asynchronous calibration using software from a reputable developer; 2) QCT using a PHK phantom (QCT-PHK). For convert the HU to BMD values, we scanned the PHK phantom and calculate correction factor. Phantom contains “vertebrae” filled with potassium hydrogen phosphate in different concentrations. In both methods, the BMD values measured for LI–II, and sometimes for ThXII, LIII.
Results. The study enrolled 65 subjects (11 male and 54 female patients); median age 69.0 years. A comparison of the vertebrae BMD measured by QCT and QCT-PHK revealed a significant linear Pearson correlation r = 0.977 (p < 0.05). The Bland–Altman analysis demonstrated a lack of relationship between the difference in measurements and the average BMD and a systematic BMD; bias of +4.50 mg/ml in QCT vs. QCT-PHK. Differences in the division into groups osteoporosis / osteopenia / norm according to the ACR criteria for the two methods were not significant.
Conclusion. The developed asynchronous QCT-PHK method measure BMD comparable to the widely used QCT with asynchronous calibration. This method can be used for opportunistic screening for osteoporosis.
About the Authors
A. V. PetraikinRussian Federation
Alexey V. Petraikin – Cand. of Sci. (Med.), Associate Professor, Leading Researcher of the Department of Innovation Technology
16/26, str. 1, Raskovoy str. 125124, Moscow, Russian Federation
Phone: +7-926-575-46-02
A. K. Smorchkova
Russian Federation
Anastasia K. Smorchkova – Student of the Department of Radiology
Russia, 19, str. 1A, Marshala Timoshenko str., 121359 Moscow, Russian Federation
N. D. Kudryavtsev
Russian Federation
Nikita D.Kudryavtsev – Junior Researcher of the Department of Innovation Technology
16/26, str. 1, Raskovoy str. 125124, Moscow, Russian Federation
K. A. Sergunova
Russian Federation
Kristina A. Sergunova – Cand. of Sci. (Tech.), Head of the Department of Innovation Technology
16/26, str. 1, Raskovoy str. 125124, Moscow, Russian Federation
Z. R. Artyukova
Russian Federation
Zlata R. Artyukova – Engineer, Student of the Department of Radiology
16/26, str. 1, Raskovoy str. 125124, Moscow, Russian Federation;
Russia, 19, str. 1A, Marshala Timoshenko str., 121359 Moscow, Russian Federation
L. R. Abuladze
Russian Federation
Liya R. Abuladze – Student
8 bld. 2, Trubetskaya str., 119991 Moscow, Russian Federation
L. R. Iassin
Russian Federation
Leila R. Iassin – Student
8 bld. 2, Trubetskaya str., 119991 Moscow, Russian Federation
F. A. Petraikin
Russian Federation
Fedor A. Petraikin – Graduate student of Faculty of Fundamental Medicine
1, Leninskie gori, 119991, Moscow, Russian Federation
M. N. Lobanov
Russian Federation
Mihail N. Lobanov – Cand. of Sci. (Med.), acting head of the Department of organizational and methodological
16/26, str. 1, Raskovoy str. 125124, Moscow, Russian Federation
A. E. Nikolaev
Russian Federation
Alexander E. Nikolaev – Junior Researcher of the Department of Radiology Quality Development
16/26, str. 1, Raskovoy str. 125124, Moscow, Russian Federation
A. N. Khoruzhaya
Russian Federation
Anna N. Khoruzhaya – Junior Researcher of the Department of Innovation Technology
16/26, str. 1, Raskovoy str. 125124, Moscow, Russian Federation
D. S. Semenov
Russian Federation
Dmitry S. Semenov – Researcher of the Department of Innovation Technology
16/26, str. 1, Raskovoy str. 125124, Moscow, Russian Federation
L. A. Nisovstova
Russian Federation
Lyudmila A. Nisovstova – Doct. of Sci. (Med.), Professor, General Researcher of the Department of Science Coordination
16/26, str. 1, Raskovoy str. 125124, Moscow, Russian Federation
A. V. Vladzymyrskyy
Russian Federation
Anton V. Vladzymyrskyy – Doct. of Sci. (Med.), Deputy Director of Science
16/26, str. 1, Raskovoy str. 125124, Moscow, Russian Federation
S. P. Morozov
Russian Federation
Sergey P. Morozov – Doct. of Sci. (Med.), Professor, Head
16/26, str. 1, Raskovoy str. 125124, Moscow, Russian Federation
References
1. Engelke K. Quantitative Computed Tomography – Current Status and New Developments. J Clin Densitom. 2017; 20 (3): 309–321. https://doi.org/10.1016/j.jocd.2017.06.017
2. Petraikin A.V., Smoliarchuk M.Y., Petryaykin F.A., Nizovtsova L.A., Artyukova Z.R., Sergunova К.A., Akhmad E.S., Semenov D.S., Vladzymyrsky A.V., Morozov S.P. Assessment the Accuracy of Densitometry Measurements Using DMA PP2 Phantom. Traumatology and Orthopedics of Russia. 2019; 25 (3): 124–134. (In Russian) https://doi.org/10.21823/2311-2905-2019-25-3-124-134
3. Petraikin A.V., Nisovtsova L.A., Sergunova K.A., Akhmad E.S., Semenov D.S., Petryaykin F.A., Gombolevsky V.A., Nikolaev A.E., Koshurnikov D.S., Titova Yu. I., Morozov S.P., Vladzymyrsky A.V. Accuracy of asynchronous quantitative computed tomography by phantom modelling. Radiology-practice. 2019; 78 (6): 48–59. (In Russian)
4. Brett A.D., Brown J.K. Quantitative computed tomography and opportunistic bone density screening by dual use of computed tomography scans. J. Orthop. Transl. 2015; 3 (4): 178–184. https://doi.org/10.1016/j.jot.2015.08.006
5. Ziemlewicz T.J., Binkley N., Pickhardt P.J. Opportunistic Osteoporosis Screening: Addition of Quantitative CT Bone Mineral Density Evaluation to CT Colonography. J. Am. Coll. Radiol. 2015; 12 (10): 1036–1041. https://doi.org/10.1016/j.jacr.2015.04.018
6. Therkildsen J., Winther S., Nissen L., Jørgensen H., Thygesen J., Ivarsen P., Frost L., Langdahl B., Hauge E., Boettcher M. Feasibility of Opportunistic Screening for Low Thoracic Bone Mineral Density in Patients Referred for Routine Cardiac CT. J. Clin. Densitom. 2020; 23 (1): 117–127. https://doi.org/10.1016/j.jocd.2018.12.002
7. Lee S.J., Binkley N., Lubner M.G., Bruce R.J., Ziemlewicz T.J., Pickhardt P.J. Opportunistic screening for osteoporosis using the sagittal reconstruction from routine abdominal CT for combined assessment of vertebral fractures and density. Osteoporos. Int. 2016; 27 (3): 1131–1136. https://doi.org/10.1007/s00198-015-3318-4
8. Pickhardt P.J., Pooler B.D., Lauder T., del Rio A.M., Bruce R.J., Binkley N. Opportunistic screening for osteoporosis using abdominal computed tomography scans obtained for other indications. Ann. Intern. Med. 2013; 158 (8): 588–595. https://doi.org/10.7326/0003-4819-158-8-201304160-00003
9. Ziemlewicz T.J., Maciejewski A., Binkley N., Brett A.D., Brown J.K., Pickhardt P.J. Direct comparison of unenhanced and contrast-enhanced CT for opportunistic proximal femur bone mineral density measurement: Implications for osteoporosis screening. Am. J. Roentgenol. 2016; 206 (4): 694–698. https://doi.org/10.2214/AJR.15.15128
10. Roski F., Hammel J., Mei K., Baum T., Kirschke J., Laugerette A, Kopp F., Bodden J., Pfeiffer D., Pfeiffer F., Rummeny E, Noël P., Gersing A., Schwaiger B. Bone mineral density measurements derived from dual-layer spectral CT enable opportunistic screening for osteoporosis. Eur. Radiol. 2019; 29 (11): 6355–6363. https://doi.org/10.1007/s00330-019-06263-z
11. Lesnyak O.M., Baranova I.A., Belova K.Y., Gladkova E.N., Evstigneeva L.P., Ershova O.B., Karonova T.L., Kochish A.Yu., Nikitinskaya O.a., Skripnikova I.A., Toroptsova N.V., Aramisova R.M.. Osteoporosis in Russian Federation: Epidemiology, Socio-Medical and Economical Aspects (Review). Traumatology and Orthopedics of Russia. 2018; 24 (1): 155–168. https://doi.org/10.21823/2311-2905-2018-24-1-155-168
12. Brown J.K., Timm W., Bodeen G., Chason A. Asynchronously Calibrated Quantitative Bone Densitometry. J. Clin. Densitom. 2017; 20 (2): 216–225. https://doi.org/10.1016/j.jocd.2015.11.001
13. The American College of Radiology. ACR–SPR–SSR Practice Parameter for the Performance of Musculoskeletal Quantitative Computed Tomography (QCT). https://www.acr.org/-/media/ACR/Files/Practice-Parameters/QCT.pdf. Published 2018.
14. Baum T., Yap S.P., Karampinos D.C., Nardo L., Kuo D., Burghardt A., Masharani U., Schwartz A., Li X., Link T. Does vertebral bone marrow fat content correlate with abdominal adipose tissue, lumbar spine bone mineral density, and blood biomarkers in women with type 2 diabetes mellitus? J. Magn. Reson. Imaging. 2012; 35 (1): 117–124. https://doi.org/10.1002/jmri.22757
15. Bredella M.A., Daley S.M., Kalra M.K., Brown J.K., Miller K.K., Torriani M. Marrow Adipose Tissue Quantification of the Lumbar Spine by Using Dual-Energy CT and Single-Voxel (1)H MR Spectroscopy: A Feasibility Study. Radiology. 2015; 277 (1): 230–235. https://doi.org/10.1148/radiol.2015142876
16. Shuhart C.R., Yeap S.S., Anderson P.A., Jankowski L.G., Lewiecki E.M., Morse L.R., Rosen H.N., Weber D.R., Zemel B.S., Shepherd J.A. Executive Summary of the 2019 ISCD Position Development Conference on Monitoring Treatment, DXA Cross-calibration and Least Significant Change, Spinal Cord Injury, Peri-prosthetic and Orthopedic Bone Health, Transgender Medicine, and Pediatrics. J. Clin. Densitom. 2019; 22 (4): 453–471. https://doi.org/10.1016/j.jocd.2019.07.001
17. Yates C.J., Chauchard M.A., Liew D., Bucknill A., Wark J.D. Bridging the osteoporosis treatment gap: Performance and cost-effectiveness of a fracture liaison service. J. Clin. Densitom. 2015; 18 (2): 150–156. https://doi.org/10.1016/j.jocd.2015.01.003
18. Engelke K., Lang T., Khosla S., Qin L., Zysset P., Leslie W.D., Shepherd J. A., Shousboe J. T. Clinical Use of Quantitative Computed Tomography-Based Advanced Techniques in the Management of Osteoporosis in Adults: the 2015 ISCD Official Positions-Part III. J. Clin. Densitom. 2015; 18 (3): 393–407. https://doi.org/10.1016/j.jocd.2015.06.010
19. Petraikin A.V., Ivanov D.V., Akhmad E.S., Sergunova K.A., Nizovtsova L.A., Petryaykin F.A., Ruzov S.A., Kirilova I.V., Kossovich L.Yu., Bessonov L.V., Dol A.V., Vladzymyrskyy A.V., Harlamov A.V. Phantom modeling for selection of optimum reconstruction filters in the quantitative computer tomography. Medicinskaya Fisika = Medical Physics. 2020; 2: 34–44. (In Russian)
20. Gromov А.I., Petraikin A.V., Kulberg N.S., Kim S.Yu., Morozov S.P., Sergunova K.A., Usanov M.S. The Problem of X-Ray Attenuation Estimation Accuracy in Multislice Computed Tomography. Medical Visualization. 2016; 6: 133–142. (In Russian)
21. Yudin A.L. A possible way to solve problems in CT densitometry. Clin. Imaging. 1995; 19 (3): 197–200.
Review
For citations:
Petraikin A.V., Smorchkova A.K., Kudryavtsev N.D., Sergunova K.A., Artyukova Z.R., Abuladze L.R., Iassin L.R., Petraikin F.A., Lobanov M.N., Nikolaev A.E., Khoruzhaya A.N., Semenov D.S., Nisovstova L.A., Vladzymyrskyy A.V., Morozov S.P. Comparison of two asynchronous QCT methods. Medical Visualization. 2020;24(4):108-118. https://doi.org/10.24835/1607-0763-2020-4-108-118