Preview

Medical Visualization

Advanced search

MRI and CT venography in the diagnosis of hemodynamic disorders in patients suffering from the lower extremities veins chronic diseases Part I. Possibilities of MRI in visualization of the vascular blood flow of the lower extremities

https://doi.org/10.24835/1607-0763-2020-4-81-101

Abstract

Despite the fact that most vascular surgeons in Russia rarely use magnetic resonance imaging (MRI) in their daily practice, today interest in this method of imaging among specialists in the world is steadily increasing. This is due to the desire of clinicians to have another non – invasive method for diagnosing hemodynamic disorders of both the arterial (Magnetic Resonance Angiography – MRA) and venous vascular bed (Magnetic Resonance Venography – VRA). The development of these methods today is associated with the solution of many technical problems, the development of special pulse sequences and post-processing methods for the resulting image. This literature review analyzes published scientific data on the methodology of MRI in relation to the vascular system and the choice of optimal scanning modes. Taking into consideration the fact that this material is intended primarily for vascular surgeons and phlebologists, and not radiologists, the first part summarizes the basic understanding of the physical phenomena underlying the MRI image, without which a thoughtful analysis of the advantages and disadvantages of MR-Angiography and the search for the most optimal scanning mode for MR-Venography is not possible. Based on the constant desire of clinicians to be self-educated, it seems that this part of the presented material will not be difficult to understand. When describing the developed contrast-free and contrast-free MRA methods, attention is paid to the traditional methods of image processing in 2D mode (TOF, PC) using pulse sequences: spin echo (SE), multi-echo (SE T2), turbo spin echo (TSE), fast Advanced Spin Echo (fast Advanced Spin Echo-FASE), gradient echo (Gradient Echo-GE, GRE) and inversion recovery (Inversion Recovery-IR). In addition, the focus is on the most modern solu tions, including: multiplantar reformatting (MPR), maximum intensity projection (MIP), subvolume maximum intensity, surface rendering (SR), volume rendering (VR) and virtual intraluminal endoscopy (VIE). For all the methods used today, MR-Angiography is shown to be specific and informative, with a detailed analysis of the advantages and disadvantages. The nuances of understanding the resulting angiographic image in T1 and T2-weighted images and the phenomena of “bright blood” and “black blood” are shown. Since the absence of information or a brief mention only about the possibilities of using MRI in the diagnosis of hemodynamic disorders in patients with vascular pathology in Russian scientific literature it seems that this material is relevant and will arouse some interest from various specialists. Of particular interest is the potential use of contrast-free and contrast – free MR Angiography in the study of venous pathology of the lower extremities and pelvis, especially with regard to timely and accurate diagnosis of deep venous thrombosis (deep Vein Thrombosis-DVT) and venous thromboembolism (Venous Thrombosis – Embolism – VTE), which occupy a special position in the structure of patients with chronic venous Disorders of the lower extremities (Chronic Venous Disorders-CVD).

About the Authors

E. V. Shajdakov
Bekhterev Institute of human brain of the Russian Academy of Sciences (RAS)
Russian Federation

Evgenij V. Shajdakov – Doct. of Sci. (Med.), professor, Bekhterev Institute of human brain; President of the Saint Petersburg Association of Phlebologists (SPSP)

9, Acad. Pavlov str., St. Petersburg, 197376, Russian Federation



A. B. Sannikov
Innovative Diagnostic Clinic “MEDICA”; Pirogov Russian National Research Medical University of the Ministry of Health of Russia
Russian Federation

Aleksandr B. Sannikov – Cand. of Sci. (Med.), assistant of chief physician, vascular surgeon of the Clinic; assistant of professor of the Department of additional professional education of health professionals

24, Vokzal'naya str., Vladimir, 1600031, Russian Federation;

1, Ostrivityanova str., Moscow, 117997, Russian Federation



V. M. Emelyanenko
Pirogov Russian National Research Medical University of the Ministry of Health of Russia
Russian Federation

Vladimir M. Emelyanenko – doctor of medical sciences, professor, chief of the department of additional professional education of health professionals

1, Ostrivityanova str., Moscow, 117997, Russian Federation



L. N. Kryukova
Innovative Diagnostic Clinic “MEDICA”
Russian Federation

Lyudmila N. Kryukova – radiologist of the MRI office of the Clinic

24, Vokzal'naya str., Vladimir, 1600031, Russian Federation



A. E. Baranova
Innovative Diagnostic Clinic “MEDICA”
Russian Federation

Anna E. Baranova – radiologist of the MRI office of the Clinic

24, Vokzal'naya str., Vladimir, 1600031, Russian Federation



M. A. Rachkov
Innovative Diagnostic Clinic “MEDICA”
Russian Federation

Mihail A. Rachkov – radiologist of the СТ office of the Clinic

24, Vokzal'naya str., Vladimir, 1600031, Russian Federation



References

1. De Valois J.C., van Schaik C.C., Verzijlbergen F., van Ramshorst B., Eikelboom B.C., Meuwissen O.J.A.Th. Contrast venography: from gold standard to golden backup in clinically suspected deep vein thrombosis. Eur. J. Radiol. 1990; 11: 131–137. https://doi.org/10.1016/0720-048x(90)90162-5

2. Ozbudak O., Erogullari I., Ogus C., Cilli A., Turkay M., Ozdemir T. Doppler ultrasonography versus venography in the detection of deep vein thrombosis in patients with pulmonary embolism. J. Thromb. Thrombolysis. 2006; 21: 159–162. https://doi.org/10.1007/s11239-006-5207-3

3. Gloviczki Р., Comerota A.J., Dalsing M.C., Eklof Bo G., Gillespie D.L. The care of patients with varicose veins and associated chronic venous diseases: Clinical Practice Guidelines of the Society for Vascular Surgery and the American Venous Forum. J. Vasc. Surg. 2011; 53 (5, Suppl.): 2S–48S. https://doi.org/10.1016/j.jvs.2011.01.079

4. Wittens C., Davies A.H. Management of Chronic Venous Disease. Clinical Practice Guidelines of European Society for Vascular Surgery (ESVS). Eur. J. Vasc. Endovasc. Surg. 2015; 49 (6): 678–737. https://doi.org/10.1016/j.ejvs.2015.09.024

5. Mintz B.L., Araki C.T., Kritharis A., Hobson R.W. Venous Duplex Ultrasound of the Lower Extremity in Diagnosis of Deep Venous Thrombosis. Chapter in Book: Noninvasive Vascular Diagnosis. Eds Abu Rahma A.F., Bergan J.J. London: Springer, 2007: 385–393. https://doi.org/10.1007/978-1-84628-450-2_35

6. Righini M. Is it worth diagnosing and treating distal deep venous thrombosis? No. J. Thromb. Haemost. 2007; 5 (1): 55–59. https://doi.org/10.1111/j.1538-7836.2007.02468.x

7. Dalsing M., Eklof B. Management of chronic venous disorders. Book Chapter in Handbook of Venous Dis or ders. CRS Press; 2008. https://doi.org/10.1201/b13654-32

8. Kanne J.P., Lalani T.A. Role of Computed Tomography and Magnetic Resonance Imaging for Deep Venous Thrombosis and Pulmonary Embolism. Circulation. 2004; 109 (12): 15–21. https://doi.org/10.1161/01.cir.0000122871.86662.72

9. Carpenter J.P., Holland G.A., Baum R.A., Owen R.S., Carpenter J.T., Cope C. Magnetic resonance venography for the detection of deep venous thrombosis: Comparison with contrast venography and duplex Doppler ultrasonography. J. Vasc. Surg. 1993; 18 (5): 734–741. https://doi.org/10.1016/0741-5214(93)90325-g

10. Moody A.R., Pollock J.G., O’Connor A.R., Bagnall M. Lower-limb deep venous thrombosis: direct MR imaging of the thrombus. J. Radiol. 1998; 209 (2): 349–355. https://doi.org/10.1148/radiology.209.2.9807558

11. Coche E.E., Hamoir X.L., Hammer F.D., Hainaut P., Goffette P.P. Using dual-detector helical CT angiography to detect deep venous thrombosis in patients with suspicion of pulmonary embolism: diagnostic value andadditional findings. Am. J. Roentgenol. 2001; 176: 1035–1039. https://doi.org/10.2214/ajr.176.4.1761035

12. Evert J Blink. Basic MRI Physics, Application specialist MRI, 2004. https://www.mri-physics.net

13. Idrees M. An overview on MRI physics and its clinical applications. Int. J. Curr. Pharmac. & Clin. Res. 2014; 4: 185–193. https://www.researchgate.net

14. Kangarlu A., Robitaille P.M. Biological effects and health implications in magnetic resonance imaging. Concepts Magn. Resonance. 2000; 12: 321–359. https://doi.org/10.1002/1099-0534(2000)

15. Anderson C.M., Edelman R.R., Turski P.A. Clinical Magnetic Resonance Angiography. New York: Raven Press, 1993. https://doi.org/10.1002/mrm.1910310519

16. Brown R.W., Cheng Yu.N., Haacke E.M., Thompson M.R., Venkatesan R. Magnetic Resonans Imaging. Physical Priciples and Sequence Design. 2nd ed. Wiley Blackwell, 2014. ISBN: 9781118633984. https://doi.org/10.1002/9781118633953

17. Westbrook C., Roth C., Talbot J. MRI in Practice. 4th ed. Oxford, UK: Blackwell Publishing, 2011. ISBN 978- 1444337433. https://doi.org/10.2214/ajr.11.8252

18. Obuchowski N.A., Gazelle G.S. Handbook for Clinical Trials of Imaging and Image-Guided Interventions. Wiley Blackwell, 2016. ISBN: 9781118849569. https://doi.org/10.1002/9781118849712.

19. Brawn M.A., Nishino T., Semelka R. MRI: Basic Principles and Applications. J. Med. Phy. 2004; 31 (1): 170. https://doi.org/10.1118/1.1636163

20. Kwong R.Y. Cardiovascular Magnetic Resonance Imaging. Springer nature Switzerland AG, 2008. ISBN 978-1- 59745-306-6. https://www.springer.com

21. Nasif M. Cardiovascular magnetic resonance imaging. J. Radiol. Brasileira. 2008; 41 (2): 18. https://doi.org/10.1590/s0100.39842008000100016

22. Dale B.M., Brown M.A,, Semelka R.C. MRI Basic Principles and Applications. Wiley-Blackwell, 2010. https://doi.org/10.1002/9781119013068

23. Va Hecke P., Rink P.A. Magnetic resonance in medicine. The Basic Texbook of the European Magnetic Resonance Forum. Eur. Radiol. 2002. https://www.link.Springer.com. https://doi.org/10.1007/s00330-001-1154-8

24. Schneider G., Prince M.R., Meaney J.F.M., Ho V.B. Magnetic Resonance Angiography. Techniques, Indi cations and Practical Applications, foreword by E.J. Potchen. Italia: Springer-Verlag, 2005. ISBN 88-470-0266-4. https://www.springer.com

25. Reichenboch J.R., Haacke E.M. Gradient Echo Imaging. Book Chapter in Susceptibility Weighted Imaging in MRI. Wiley-Blackwell, 2011. ISBN 9780470043431. https://doi.org/10.1002/9780470905203

26. Lenz G, Haacke E, Masaryk T, Laub G.A. Inplane vascular imaging: pulse sequence design and strategy. J. Radiol. 1988; 166 (3): 875–882. https://doi.org/10.1148/radiology.166.3.3340788

27. Laub G.A., Kaiser W.A. MR angiography with gradient motion refocusing. J. Comput. Assist. Tomogr. 1988; 12: 377–382. https://doi.org/10.1097/00004728-198805010-00002

28. Backeus M., Schmitz B. Unenhanced MR Angiography. Chapter in Book: Magnetic Resonance Angiography. Springer, 2005: 3–22. ISBN 88-470-0266-4. https://www.springer.com

29. Keller P.J., Drayer B.P., Fram E.K., Williams K.D. MR angiography with two-dimensional acquisition and threedimensional display. J. Radiol. 1989; 173 (2): 527–532. https://doi.org/10.1148/radiology.173.2.2798885

30. Parker D.L., Yuan C., Blatter D.D. MR angiography by multiple thin-slab 3D acquisitions. J. Magn. Reson. Med. 1991; 17 (2): 434–451. https://doi.org/10.1002/mrm.1910170215

31. Atkinson D., Brant-Zawadzki M., Gillan G. Improved MR angiography: Magnetization transfer suppression with variable flip angles excitation and increased resolution. J. Radiol. 1994; 190: 890–894. https://doi.org/10.1148/radiology.190.3.8115646

32. Axel L., Morton D. MR flow imaging by velocity-compensated/ uncompensated difference images. J. Comput. Assist. Tomogr. 1987; 11 (1): 31–34. https://doi.org/10.1097/00004728-198701000-00006

33. Dumoulin C.L., Hart H.R. Magnetic Resonance Angiography. J. Radiology. 1986; 161 (3): 717–720. https://doi.org/10.1148/radiology.161.3.3786721

34. Dumoulin C.L., Souza S.P., Walker M.F., Wagle W. Threedimensional phase contrast angiography. J. Magn. Reson. Med. 1989; 9 (1): 139–149. https://doi.org/10.1002/mrm.1910090117

35. Kaufman J.A., McCarter D., Geller S.C., Waltman A.C. Two-dimensional time-of-flight MR angiography of the lower extremities: artifacts and pitfalls. Am. J. Roentgenol. 1998; 171 (1): 129–135. https://doi.org/10.2214/ajr.171.1.9648776

36. Plein S., Geenwood J., Ridgway J.P. Cardiovascular MR Manual. Springer International Publishing, 2015. ISBN 978-3-319-20940-1. https://doi.org/10.1007/978-3-319-20940-1

37. Yucel E.K., Anderson C.M., Edelman R.R., Crist T.M., Baum R.A., Manning W.J. Magnetic resonance angiography. Circulation. 1999; 100 (22): 2284–2301. https://doi.org/10.1161/01.cir.100.22.2284

38. Koelemay M.J., Lijmer J.G., Stoker J., Legemate D.A., Bossuyt P.M.M. Magnetic resonance angiography for the evaluation of lower extremity arterial disease. A metaanalysis. JAMA. 2001; 285 (10): 1338–1345. https://doi.org/10.1001/jama.285.10.1338

39. Nelemans P.J., Leiner T., de Vet H.C., van Engelshoven J.M.A. Peripheral arterial disease: meta-analysis of the diagnostic performance of MR angiography. J. Radiol. 2000; 217 (1): 105–114. https://doi.org/10.1148/radiology.217.1.r00oc11105

40. Ho V.B., Foo T.K.F., Czum J.M., Marcos H., Choyke P.L., Knopp M.V. Contrast-Enhanced Magnetic Resonance Angiography: Technical Considerations for Optimized Clinical Implementation. Top Magn. Reson. Imaging. 2001; 12 (4): 283–299. https://doi.org/10.1097/00002142-200108000-00005

41. Maki J.H., Knopp M.V., Prince M. Contrast-enhanced MR angiography. App. Radiol. 2003; 32 (Suppl.): 3–31. https://doi.org/10.1201/b14328-16

42. Knopp M.V., von Tengg-Kobligk H., Floemer F.S., Schoenberg S.O. Contrast agents for MRA: future directions. JMRI. 1999; 10 (3): 314–316. https://doi.org/10.1002/(sici)1522-2586(199909)

43. Reimer P., Bremer C., Allkemper T., Engelhardt M., Mahler M., Ebert W., Tombach B. Myocardial perfusion and MR angiography of chest with SHU555C: results of placebo-controlled clinical phase I study. Radiology. 2004; 231: 474–481. https://doi.org/10.1148/radiol.2312021251

44. Haacke E.M., Reichenbach L.R. Susceptibility Weighted Imaging in MRI. Basic Concepts and Clinical Applications. Wiley Blackwell. ISBN: 9780470905197. https://doi.org/10.1002/9780470905203

45. Gibby W.A., Gibby K.A., Gibby W.A. Comparison of Gd DTPA-BMA (Omniscan) versus Gd HP-DO3A (ProHance) retention in human bone tissue by Inductively Coupled Plasma Atomic Emission Spectroscopy. Invest. Radiol. 2004; 39 (3): 138–142. https://doi.org/10.1097/01.rli.0000112789.57341.01

46. Goyan M., Ruehm S.G., Debatin J.F. MR Angiography: the role of contrast agents. Eur. J. Radiol. 2000; 34 (3): 247–256. https://doi.org/10.1016/s0720-048x(00)00203-5

47. Hany T.F., Schmidt M., Hilfiker P.R., Steiner P., bachman U., debatin J.F. Optimization of contrast dosage for gadolinium-enhanced 3D MRA of the pulmonary and renal arteries. Magn. Reson. Imaging. 1998; 16: 901–906. https://doi.org/10.1016/s0730-725x(98)00012-5

48. de Haën C., Cabrini M., Akhnana L., Ratti D., Calabi L., Gozzini L. Gadobenate dimeglumine 0.5M solution for injection (Multi-Hance): pharmaceutical formulation and physicochemical properties of a new magnetic resonance imaging contrast medium. J. Comput. Assist. Tomogr. 1999; 23: 161–168. https://doi.org/10.1097/00004728-199911001-00021

49. Cavagna F., Maggioni F., Castelli P. Gadolinium chelates with weak binding to serum proteins. A new class of highefficiency, general purpose contrast agents for magnetic resonance imaging. Invest. Radiol. 1997; 32 (2): 780–796. https://doi.org/10.1097/00004424-199712000-00009

50. Knopp M., Schoenberg S., Rehm C., Floemer F., Von- Tengg-Kobligk H. Assessment of Gadobenate Dimeglumine (Gd-BOPTA) for MR Angiography: Phase I Studies. Invest. Radiol. 2002; 37 (12): 706–715. https://doi.org/10.1097/00004424-200212000-00011

51. Völk M., Strotzer M., Lenhart M., Seitz J., Manke C., Feuerbach S., Link J. Renal time-resolved MR angiography: quantitative comparison of gadobenate dimeglumine and gadopentetate dimeglumine with different doses. J. Radiol. 2001; 220 (2): 484–488. https://doi.org/10.1148/radiology.220.2.r01au38484

52. Wyttenbach R., Gianella S., Alerci M., Braghett., Cozzi L., Gallino A. Prospective Blinded Evaluation of Gd-DOTA – versus Gd-BOPTA–enhanced Peripheral MR Angiography, as Compared with Digital Subtraction Angiography. J. Radiol. 2003; 227 (1): 261–269. https://doi.org/10.1148/radiol.2271011989

53. Herborn C.U., Goyen M., Lauenstein T.C. Comprehensive time-resolved MRI of peripheral vascular malformations Am. J. Roentgenol. 2003; 181 (3): 729–735. https://doi.org/10.2214/ajr.181.3.1810729

54. Perreault P., Edelman M.A., Baum R.A., Yucel E.K., Weisskoff R.M. MR angiography with gadofosveset trisodium for peripheral vascular disease: phase II trial. J. Radiol. 2003; 229 (3): 811–820. https://doi.org/10.1148/radiol.2293021180

55. Caravan P., Cloutier N.J., Greenfield M.T. The interaction of MS-325 with human serum albumin and its effect on proton relaxation rates. J. Am. Chem. Soc. 2002; 124 (12): 3152–3162. https://doi.org/10.1021/ja017168k

56. Stuber M., Botnar R.M., Danias P.G. Contrast agentenhanced, free-breathing, three-dimensional coronary magnetic resonance angiography. J. Magn. Reson. Imaging. 1999; 10: 790–799. https://doi.org/10.1002/(sici)1522-2586(199911)

57. Kraitchman D.L., Chin B.B., Heldman A.W., Solaiyappen M., Bluemke D.A. MRI detection of myocardial perfusion defects due to coronary artery stenosis with MS-325. J. Magn. Reson. Imaging. 2002; 15 (2): 149–158. https://doi.org/10.1002/jmri.10051

58. Paetsch I., Huber M., Bornstedt A. Improved 3D freebreathing coronary MRA using gadocoletic acid (B-22956) for intravascular contrast enhancement. J. Magn. Reson. Imaging. 2004; 20: 288–293. https://doi.org/10.1002/jmri.20099

59. La Noce A., Stoelben S., Scheffler K. B22956/1, a new intravascular contrast agent for MRI: first administration to humans–preliminary results. Acad. Radiol. 2002; 9 (Suppl.): 404–406. https://doi.org/10.1016/s1076-6332(03)80245-3 60. Reimer P., Bremer C., Allkemper T., Engelhardt M. Myocardial perfusion and MR angiography of chest with SH U 555 C: results of placebo-controlled clinical phase I study. J. Radiol. 2004; 231 (2): 474–481. https://doi.org/10.1148/radiol.2312021251

60. Weishaupt D., Ruhm S., Binkert C. Equilibrium-phase MR angiography of the aortoiliac and renal arteries using a blood pool contrast agent. Am. J. Roentgenol. 2000; 175: 189–195. https://doi.org/10.2214/ajr.175.1.1750189

61. Taylor A., Panting J., Keegan J. Safety and preliminary findings with the intravascular contrast agent NC100150 injection for MR coronary angiography. J. Magn. Reson. Imaging. 1999; 9: 220–227. https://doi.org/10.1002/(sici)1522-2586(199902

62. Bachmann R., Conrad R., Kreft B. Evaluation of a new ultrasmall superparamagnetic iron oxide contrast agent Clariscan, (NC100150) for MRI of renal perfusion: experimental study in an animal model. J. Magn. Reson. Imaging. 2002; 16: 190–195. https://doi.org/10.1002/jmri.10149

63. Reimer P., Allkemper T., Matuszewski L. Contrast-enhanced 3D-MRA of the upper abdomen with a bolus-injectable SPIO (SH U 555 A). J. Magn. Reson. 1999; 10: 65–71. https://doi.org/10.1002/(sici)1522-2586(199907)

64. Mayo-Smith W., Saini S., Slater G., Kaufman J.A., Sharma P., Hahn P.F. MR contrast material for vascular enhancement: value of superparamagnetic iron oxide. Am. J. Roentgenol. 1996; 166: 73–77. https://doi.org/10.2214/ajr.166.1.8571910

65. Ho V.B., Foo T.K.F, Czum J.M., Marcos H., Choyke P.L., Knopp M.V. Contrast-Enhanced Magnetic Resonance Angiography: Technical Considerations for Optimized Clinical Implementation. Top. Magn. Reson. Imaging. 2001; 12: 283–299. https://doi.org/10.1097/00002142-200108000-00005

66. Maki J.H., Knopp M.V., Prince M. Contrast-enhanced MR angiography. Appl. Radiol. 2003; 32: 3–31. https://doi.org/10.1201/b14328-16

67. Hohenschuh E., Watson A. Theory and mechanisms of contrast-enhancing agents. In: Higgins C., Hricak H., Helms C., eds. Magnetic Resonance Imaging of the Body. Philadelphia, Pa: Lippencott-Raven, 1997: 1439–1464. https://www.springer.com

68. Hany T.F., McKinnon G.C., Leung D.A., Pfammatter T., Debatin S.F. Optimization of contrast timing for breathhold three-dimensional MR angiography. J. Magn. Reson. Imaging. 1997; 7 (3): 551–556. https://doi.org/10.1002/jmri.1880070316

69. Marks B., Mitchell D.G., Simelaro J.P. Breath-holding in healthy and pulmonary-compromised populations: Effects of hyperventilation and oxygen inspiration. J. Magn. Reson. Imaging. 1997; 7 (3): 595–597. https://doi.org/10.1002/jmri.1880070323

70. Foo T.K., Saranathan M., Prince M.R. Automated detection of bolus arrival and initiation of data acquisition in fast, three-dimensional, gadolinium-enhanced MR angiography. J. Radiol. 1997; 203 (1): 275–280. https://doi.org/10.1148/radiology.203.1.9122407

71. Lee V.S., Martin D.J., Krinsky G.A. Gadolinium-enhanced MR angiography: Artifacts and pitfalls. Am. J. Roentgenol. 2000; 175: 197–205. https://www.ncbi.nlm.nih.gov

72. Earls J.P., Rofsky N.M., DeCorato D.R., Krinsky G.A., Weinreb J.C. Breath-hold single dose Gd-enhanced three-dimensional MR aortography: usefulness of a timing examination and MR power injector. Radiology. 1996; 201 (3): 705–710. https://doi.org/10.1148/radiology.201.3.8939219

73. Kim J.K., Farb R.I., Wright G A. Test bolus examination in the carotid artery at dynamic gadolinium-enhanced MR angiography. J. Radiol. 1998; 206 (1): 283–289. https://doi.org/10.1148/radiology.206.1.9423685

74. Ho V.B., Foo T.K. Optimization of gadolinium-enhanced magnetic resonance angiography using an automated bolus detection algorithm (MR Smart-Prep). Original investigation. Invest. Radiol. 1998; 33 (9): 515–523. https://doi.org/10.1097/00004424-199809000-00006

75. Riederer S.J., Bernstein M.A., Breen J.F. Three-dimensional contrast-enhanced MR angiography with real-time fluoroscopic triggering: design specifications and techni cal reliability in 330 patient studies. J. Radiol. 2000. 215: 584–593. https://doi.org/10.1148/radiology.215.2.r00ma21584

76. Prince M.R. Gadolinium-enhanced MR aortography. J. Radiol. 1994; 191 (1): 155–164. https://doi.org/10.1148/radiology.191.1.8134563

77. Prince M.R., Narasimham D.L., Stanley J.C., Chenevert T.L., Williams D.M., Marx M.V., Cho K.J. Breathhold gadolinium-enhanced MR angiography of the abdominal aorta and its major branches. J. Radiol. 1995; 197 (3): 785–671. https://doi.org/10.1148/radiology.197.3.7480757

78. Meaney James F.M. MR Angiography of Peripheral Arteries: Lower Extremities. Chapter in Book: Magnetic Resonance Angiography. Springer. 2005: 3–22. ISBN 88-470-0266-4. https://doi.org/10.1007/88-470-0352-0_16

79. Meaney F.M., Ridgway J.P., Chakraverty S. Stepping- Table Gadolinium-enhanced Digital Substraction MR Angiography of the Aorta and lower extremity Arteries: Preliminary Experience. J. Radiol. 1999; 211 (1): 59–67. https://doi.org/10.1148/radiology.211.1.r99ap1859

80. Ho K.Y., de Haan M.W., Kessels A.G., Kitslaar P.J., van Engelshoven J.M. Peripheral vascular tree stenoses: detection with subtracted and nonsubtracted MR angiography. J. Radiol. 1998; 206: 673–681. https://doi.org/10.1148/radiology.206.3.9494485

81. Ruehm Stefan G. MR Venography. Chapter in Book: Magnetic Resonance Angiography. Springer, 2005: 3–22. ISBN 88-470-0266-4. https://www.springer.com

82. Sannikov A.B., Emelianenko V.M., Rachcov M.A. The Specific Anatomical of the Structure of the Calf Intramuscular Veins in the Healthy Subjects and in the Patients Presenting with Chronic Venous Disease: the Data Obtained by Multi-Spiral Computed Phlebography. Flebologiya. 2018; 12 (4): 292–299. https://doi.org/10.17116/flebo201812041292 (In Russian)

83. Calhoun P.S., Kuszyk B.S., Heath D.G., Carley J.C., Fishman E.K. Three-dimensional volume rendering of spiral CT data: theory and method. Radiographics. 1999; 19: 745–764. https://doi.org/10.1148/radiographics.19.3.g99ma14745

84. Hu X., Alperin N., Levin D.N. Visualization of MR angiographic data with segmentation and volumerendering techniques. J. Magn. Reson. Imaging. 1991; 1 (5): 539–546. https://doi.org/10.1002/jmri.1880010506

85. Hernández-Hoyos M., Anwander A., Orkisz M. A deformable vessel model with single point initialization for segmentation, quantification and visualization of blood vessels in 3D MRA. In MICCAI 2000 Medical Image Computing & Computer-Assisted Intervention (Lecture Notes in Computer Sci-64 Magnetic Resonance Angiography ence). S.L. Delp, A.M. Digioia, B. Jaramaz, eds. Berlin, Germany: Springer-Verlag, 2000: 735–745. https://doi.org/10.1007/978-3-540-40899-4_76

86. Olga Kubassova. Automatic Segmentetion of the Blood Vessels from Dynamic MRI Datasets. Book Chapter in Medical Image Computing & Computer-Assisted Intervention. MICCAI 2007. Berlin, Germany: Springer-Verlag, 2007: 593–600. https://doi.org/10.1007/978-3-540-75757-3_72

87. Moeller T.B., Reif E. Pocket Atlas of Sectional Anatomy Computed Tomography and Magnetic Resonance Imaging. Vol, 1, Vol, 2. Stuttgart: Thieme, 2015. Eur. J. Nucl. Med. Molec. Imaging. 2015; 42 (6). ISBN 678-3-13-125504-4. https://www.linkSpringer.com. https://doi.org/10.1007/s00259-015-2998-5


Review

For citations:


Shajdakov E.V., Sannikov A.B., Emelyanenko V.M., Kryukova L.N., Baranova A.E., Rachkov M.A. MRI and CT venography in the diagnosis of hemodynamic disorders in patients suffering from the lower extremities veins chronic diseases Part I. Possibilities of MRI in visualization of the vascular blood flow of the lower extremities. Medical Visualization. 2020;24(4):81-101. (In Russ.) https://doi.org/10.24835/1607-0763-2020-4-81-101

Views: 1889


ISSN 1607-0763 (Print)
ISSN 2408-9516 (Online)