Preview

Медицинская визуализация

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

Возможности применения модель-базированных итеративных реконструкций при компьютерной томографии легких

https://doi.org/10.24835/1607-0763-2020-3-107-113

Полный текст:

Аннотация

Цель исследования: литературный обзор возможностей применения модельной итеративной реконструкции (МИР) при компьютерной томографии (КТ) для улучшения качества изображения, в том числе при низкодозовых протоколах сканирования.

Материал и методы. Проведен анализ публикаций, посвященных применению МИР для снижения дозы облучения и улучшения качества изображений при КТ-диагностике патологии легких с акцентом на значение достигнутой дозы облучения.

Результаты. Применение МИР позволяет устранять цифровой шум с медицинских изображений, улучшая их качество. Это свойство позволяет значительно снижать лучевую нагрузку при низкодозных протоколах без потери диагностического качества. В среднем использование МИР позволяет снизить дозу облучения на 70% по сравнению со стандартным протоколом, не повышая шумность КТ-изображений и сохраняя соотношение контраст/шум. Предыдущие исследования показали положительный опыт использования МИР в программах скрининга рака легкого и мониторинге онкологических пациентов.

Заключение. Внедрение МИР в клиническую практику может оптимизировать лучевую нагрузку на популяцию, не снижая качество КТ-изображений, однако пороговые значения дозы облучения для достижения удовлетворительного качества изображения остаются неизученными.

Об авторах

А. Ю. Силин
ООО “Клинический госпиталь на Яузе”; ГБУЗ “Научно-практический клинический центр диагностики и телемедицинских технологий Департамента здравоохранения города Москвы”
Россия

Силин Антон Юрьевич – врач-рентгенолог высшей квалификационной категории, руководитель отделения лучевой диагностики; научный сотрудник

111033 Москва, Волочаевская ул., 15, к. 1, Российская Федерация;

125124 Москва, ул. Расковой, д. 16/26, стр. 1, Российская Федерация



И. С. Груздев
ФГБУ “НМИЦ хирургии имени А.В. Вишневского” Минздрава России
Россия

Груздев Иван Сергеевич – аспирант отделения рентгенологии и магнитно-резонансных методов исследования

117997 Москва, ул. Большая Серпуховская, д. 27, Российская Федерация



Г. В. Беркович
ФГБУ “НМИЦ имени В.А. Алмазова” Минздрава России
Россия

Беркович Глеб Владимирович – заведующий кабинетом рентгеновской компьютерной томографии

197341 Санкт-Петербург, ул. Аккуратова, д. 2, Российская Федерация



А. Е. Николаев
ГБУЗ “Научно-практический клинический центр диагностики и телемедицинских технологий Департамента здравоохранения города Москвы”
Россия

Николаев Александр Евгеньевич – младший научный сотрудник отдела развития качества радиологии

125124 Москва, ул. Расковой, д. 16/26, стр. 1, Российская Федерация



С. П. Морозов
ГБУЗ “Научно-практический клинический центр диагностики и телемедицинских технологий Департамента здравоохранения города Москвы”
Россия

Морозов Сергей Павлович – доктор медицинских наук, профессор, директор

125124 Москва, ул. Расковой, д. 16/26, стр. 1, Российская Федерация



Список литературы

1. Mathews J.D., Forsythe A.V., Brady Z., Butler M.W., Goergen S.K., Byrnes G.B., Giles G.G., Wallace A.B., Anderson P.R., Guiver T.A., McGale P., Cain T.M., Dowty J.G., Bickerstaffe A.C., Darby S.C. Cancer risk in 680 000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. Br. Med. J. 2013: f2360. https://doi.org/10.1136/bmj.f2360

2. Padole A., Ali Khawaja R.D., Kalra M.K., Singh S. CT radiation dose and iterative reconstruction techniques. Am. J. Roentgenol. 2015; 204 (4): W384–W392. https://doi.org/10.2214/AJR.14.13241

3. Mayo-Smith W.W., Hara A.K., Mahesh M., Sahani D.V., Pavlicek W. How I do it: managing radiation dose in CT. Radiology. 2014; 273 (3): 657–672. https://doi.org/10.1148/radiol.14132328

4. Aurumskjold M.L., Ydstrom K., Tingberg A., Soderberg M. Model-based iterative reconstruction enables the evaluation of thin-slice computed tomography images without degrading image quality or increasing radiation dose. Radiation Protection Dosimetry. 2016; 169 (1–4): 100–106. https://doi.org/10.1093/rpd/ncv474

5. Morimoto L.N., Kamaya A., Boulay-Coletta I., Fleischmann D., Molvin L., Tian L., Fisher G., Wang J., Willmann J.K. Reduced dose CT with model-based iterative reconstruction compared to standard dose CT of the chest, abdomen, and pelvis in oncology patients: intra-individual comparison study on image quality and lesion conspicuity. Abdom. Radiol. 2017; 42 (9): 2279–2288. https://doi.org/10.1007/s00261-017-1140-5

6. Neroladaki A., Botsikas D., Boudabbous S., Becker C.D., Montet X. Computed tomography of the chest with modelbased iterative reconstruction using a radiation exposure similar to chest X-ray examination: preliminary observations. Eur. Radiol. 2013; 23 (2): 360–366. https://doi.org/10.1007/s00330-012-2627-7

7. Mehta D., Thompson R., Morton T., Dhanantwari A., Shefer E. Iterative model reconstruction: simultaneously lowered computed tomography radiation dose and improved image quality. Med. Phys. Int. J. 2013; 2 (1): 147–155.

8. Беркович Г.В. Оценка параметров качества КТ-изображений, полученных с использованием различных поколений алгоритмов реконструкций. Лучевая диагностика и терапия. 2017; (3): 109–110.

9. Padole A., Digumarthy S., Flores E., Madan R., Mishra S., Sharma A., Kalra M.K. Assessment of chest CT at CTDIvol less than 1 mGy with iterative reconstruction techniques. Br. J. Radiol. 2017; 90 (1071): 20160625. https://doi.org/10.1259/bjr.20160625

10. Lee S.W., Kim Y., Shim S.S., Lee J.K., Lee S.J., Ryu Y.J., Chang J.H. Image quality assessment of ultra low-dose chest CT using sinogram-affirmed iterative reconstruction. Eur. Radiol. 2014; 24 (4): 817–826. https://doi.org/10.1007/s00330-013-3090-9

11. Laqmani A., Avanesov M., Butscheidt S., Kurfurst M., Sehner S., Schmidt-Holtz J., Derlin T., Behzadi C., Nagel H.D., Adam G., Regier M. Comparison of image quality and visibility of normal and abnormal findings at submillisievert chest CT using filtered back projection, iterative model reconstruction (IMR) and iDose4™. Eur. J. Radiol. 2016; 85 (11): 1971–1979. https://doi.org/10.1016/j.ejrad.2016.09.001

12. Ju Y.H., Lee G., Lee J.W., Hong S.B., Suh Y.J., Jeong Y.J. Ultra-low-dose lung screening CT with model-based iterative reconstruction: an assessment of image quality and lesion conspicuity. Acta Radiol. 2018; 59 (5): 553–559. https://doi.org/10.1177%2F0284185117726099

13. Baumueller S., Winklehner A., Karlo C., Goetti R., Flohr T., Russi E.W., Frauenfelder T., Alkadhi H. Low-dose CT of the lung: potential value of iterative reconstructions. Eur. Radiol. 2012; 22 (12): 2597–2606. https://doi.org/10.1007/s00330-012-2524-0

14. Kim Y., Kim Y.K., Lee B.E., Lee S.J., Ryu Y.J., Lee J.H., Chang J.H. Ultra-low-dose CT of the thorax using iterative reconstruction: evaluation of image quality and radiation dose reduction. Am. J. Roentgenol. 2015; 204 (6): 1197–1202. https://doi.org/10.2214/AJR.14.13629

15. Hammond E., Sloan C., Newell J.D. Jr., Sieren J.P., Saylor M., Vidal C., Hogue S., de Stefano F., Sieren A., Hoffman E.A., Sieren J.C. Comparison of low- and ultralow- dose computed tomography protocols for quantitative lung and airway assessment. Med. Phys. 2017; 44 (9): 4747–4757. https://doi.org/10.1002/mp.12436

16. Hata A., Yanagawa M., Kikuchi N., Honda O., Tomiyama N. Pulmonary Emphysema Quantification on Ultra-Low-Dose Computed Tomography Using Model-Based Iterative Reconstruction With or Without Lung Setting. J. Comput. Assist. Tomogr. 2018; 42 (5): 760–766. https://10.1097/RCT.0000000000000755

17. Jia Y., Ji X., He T., Yu Y., Yu N., Duan H., Guo Y. Quantitative Analysis of Airway Tree in Low-dose Chest CT with a New Model-based Iterative Reconstruction Algorithm: Comparison to Adaptive Statistical Iterative Reconstruction in Routine-dose CT. Acad. Radiol. 2018; 25 (12): 1526–1532. https://doi.org/10.1016/j.acra.2018.03.021

18. Kim C., Lee K.Y., Shin C., Kang E.Y., Oh Y.W., Ha M., Ko C.S., Cha, J. Comparison of filtered back projection, hybrid iterative reconstruction, model-based iterative reconstruction, and virtual monoenergetic reconstruction images at both low-and standard-dose settings in measurement of emphysema volume and airway wall thickness: a CT phantom study. Korean J. Radiol. 2018; 19 (4): 809–817. https://doi.org/10.3348/kjr.2018.19.4.809

19. Gomez-Cardona D., Nagle S.K., Li K., Robinson T.E., Chen G.H. Influence of radiation dose and reconstruction algorithm in MDCT assessment of airway wall thickness: A phantom study. Med. Phys. 2015; 42 (10): 5919–5927. https://doi.org/10.1118/1.4930797

20. Hammond E., Chan K.S., Ames J.C., Stoyles N., Sloan C.M., Guo J., Newell J.D. Jr., Sieren J.C. Impact of advanced detector technology and iterative reconstruction on low-dose quantitative assessment of lung computed tomography density in a biological lung model. Med. Phys. 2018; 45(8): 3657–3670. https://doi.org/10.1002/mp.13057

21. Katsura M., Sato J., Akahane M., Mise Y., Sumida K., Abe O. Effects of pure and hybrid iterative reconstruction algorithms on high-resolution computed tomography in the evaluation of interstitial lung disease. Eur. J. Radiol. 2017; 93: 243–251. https://doi.org/10.1016/j.ejrad.2017.06.003

22. de Margerie-Mellon C., de Bazelaire C., Montlahuc C., Lambert J., Martineau A., Coulon P., de Kerviler E., Beigelman C. Reducing radiation dose at chest CT: comparison among model-based type iterative reconstruction, hybrid iterative reconstruction, and filtered back projection. Acad. Radiol. 2016; 23(10): 1246–1254. https://doi.org/10.1016/j.acra.2016.05.019

23. Xin X., Shen J., Yang S., Liu S., Hu A., Zhu B., Jiang Y., Li B., Zhang B. Improved image quality of low-dose CT combining with iterative model reconstruction algorithm for response assessment in patients after treatment of malignant tumor. Quant. Imaging Med. Surg. 2018; 8 (7): 648. https://dx.doi.org/10.21037%2Fqims.2018.08.05


Для цитирования:


Силин А.Ю., Груздев И.С., Беркович Г.В., Николаев А.Е., Морозов С.П. Возможности применения модель-базированных итеративных реконструкций при компьютерной томографии легких. Медицинская визуализация. 2020;24(3):107-113. https://doi.org/10.24835/1607-0763-2020-3-107-113

For citation:


Silin A.Yu., Gruzdev I.S., Berkovich G.V., Nikolaev A.E., Morozov S.P. Possibilities of applying model-based iterative reconstructions in computed tomography of the lungs. Medical Visualization. 2020;24(3):107-113. (In Russ.) https://doi.org/10.24835/1607-0763-2020-3-107-113

Просмотров: 44


ISSN 1607-0763 (Print)
ISSN 2408-9516 (Online)