Preview

Medical Visualization

Advanced search

COVID-19. Liver damage – visualization features and possible causes

https://doi.org/10.24835/1607-0763-2020-3-26-36

Abstract

Item. To evaluate the features of CT imaging of the liver and the possible causes of pathological changes in COVID-19.

Materials and methods. An analysis of the literature and our own data on the features of CT imaging of the liver in combination with biochemical analyzes in patients with COVID-19 was performed. The main possible causes of changes in the liver, as well as symptoms with CT, are examined.

Results. The main target of the new SARS-CoV-2 coronavirus is the respiratory system. But among patients with COVID-19, along with damage to the central nervous system, myocardium, and intestines, cases of liver damage or dysfunction have been reported. This is expressed in an increase in biochemical markers of liver damage, as well as in a diffuse decrease in its density during CT, which is usually observed in the acute stage of the disease.

About the Authors

A. S. Vinokurov
Pirogov Russian National Research Medical University of the Ministry of Health of Russia; Demikhov City Hospital of Moscow City Health Department
Russian Federation

Anton S. Vinokurov –senior laboratory assistant of radiology department; radiologist of MRI and CT department

Ostrovityanov str., 1, Moscow, 117997, Russian Federation;

Shkuleva str., 4, Moscow, 109263, Russian Federation



M. V. Nikiforova
Pirogov Russian National Research Medical University of the Ministry of Health of Russia
Russian Federation

Marina V. Nikiforova – resident of radiology department

Ostrovityanov str., 1, Moscow, 117997, Russian Federation



A. A. Oganesyan
Pirogov Russian National Research Medical University of the Ministry of Health of Russia
Russian Federation

Anna A. Oganesyan – resident of radiology department

Ostrovityanov str., 1, Moscow, 117997, Russian Federation



O. O. Vinokurova
People’s Friendship University of Russia
Russian Federation

Olga O. Vinokurova – Cand. of Sсi. (Med.), Assistant Professor of Infectious Diseases Department with Training Courses in Epidemiology and Phthisiology

Miklukho-Maklaya str., 6, Moscow, 117198, Russian Federation



A. L. Yudin
Pirogov Russian National Research Medical University of the Ministry of Health of Russia
Russian Federation

Andrey L. Yudin – Doсt. of Sсi. (Med.), Professor, Professor, Head of Radiology Department

Ostrovityanov str., 1, Moscow, 117997, Russian Federation



E. A. Yumatova
Pirogov Russian National Research Medical University of the Ministry of Health of Russia
Russian Federation

Elena A. Yumatova – Cand. of Sci. (Med.), associate professor, Radiology Department

Ostrovityanov str., 1, Moscow, 117997, Russian Federation



References

1. Lee I.C., Huo T.I., Huang Y.H. Gastrointestinal and Liver Manifestations in Patients with COVID-19. J. Chin. Med. Assoc. 2020; 10.1097/JCMA.0000000000000319. https://doi.org/10.1097/JCMA.0000000000000319

2. Pathological anatomy of COVID-19. Atlas / Under the general ed. Zairatyantsa O.V. M.: Moscow Department of Health, 2020. 116 p. (In Russian)

3. Hoffmann M., Kleine-Weber H., Schroeder S., Krüger N., Herrler T., Erichsen S., Schiergens T.S., Herrler G., Wu N.H., Nitsche A., Müller M.A., Drosten C., Pöhlmann S. SARSCoV- 2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020; 181 (2): 271–280.e8. https://doi.org/10.1016/j.cell.2020.02.052

4. Zhang C., Shi L., Wang F.S. Liver injury in COVID-19: management and challenges. Lancet Gastroenterol. Hepatol. 2020; 5 (5): 428–430. https://doi.org/10.1016/S2468-1253(20)30057-1

5. Cai Q., Huang D., Yu H., Zhu Z., Xia Z., Su Y., Li Z., Zhou G., Gou J., Qu J., Sun Y., Liu Y., He Q., Chen J., Liu L., Xu L. COVID-19: Abnormal liver function tests. J. Hepatol. 2020; S0168-8278(20)30218-X. https://doi.org/10.1016/j.jhep.2020.04.006

6. Bhayana R., Som A., Li M.D., Carey D.E., Anderson M.A., Blake M.A., Catalano O., Gee M.S., Hahn P.F., Harisinghani M., Kilcoyne A., Lee S.I., Mojtahed A., Pandharipande P.V., Pierce T.T., Rosman D.A., Saini S., Samir A.E., Simeone J.F., Gervais D.A., Velmahos G., Misdraji J., Kambadakone A. Abdominal Imaging Findings in COVID-19: Preliminary Observations. Radiology. 2020; 201908. https://doi.org/10.1148/radiol.2020201908

7. Chai X., Hu L., Zhang Y., Han W., Lu Z., Ke A. Specific ACE2 expression in cholangiocytes may cause liver damage after 2019-nCoV infection. bioRxiv 2020.02.03.931766. https://doi.org/10.1101/2020.02.03.931766

8. Xu Z., Shi L., Wang Y., Zhang J., Huang L., Zhang C., Liu S., Zhao P., Liu H., Zhu L., Tai Y., Bai C., Gao T., Song J., Xia P., Dong J., Zhao J., Wang F.S. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020; 8 (4): 420–422. https://doi.org/10.1016/S2213-2600(20)30076-X

9. Zhang Y., Zheng L., Liu L., Zhao M., Xiao J., Zhao Q. Liver impairment in COVID-19 patients: A retrospective analysis of 115 cases from a single centre in Wuhan city. Liver Int. 2020; 10.1111/liv.14455. https://doi.org/10.1111/liv.14455

10. Garrido I., Liberal R., Macedo G. Review article: COVID-19 and liver disease - what we know on 1st May 2020. Aliment Pharmacol. Ther. 2020; 10.1111/apt.15813. https://doi.org/10.1111/apt.15813

11. Li Q., Zhang J., Ling Y., Li W., Zhang X., Lu H., Chen L. A simple algorithm helps early identification of SARS-CoV-2 infection patients with severe progression tendency. Infection. 2020; 1–8. https://doi.org/10.1007/s15010-020-01446-z

12. Lai C.C., Shih T.P., Ko W.C., Tang H.J., Hsueh P.R. Severe acute respiratory syndrome coronavirus 2 (SARSCoV- 2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int. J. Antimicrob. Agents. 2020; 55 (3): 105924. https://doi.org/10.1016/j.ijantimicag.2020.105924

13. Shi J., Li Y., Zhou X., Zhang Q., Ye X., Wu Z., Jiang X., Yu H., Shao L., Ai J.-W., Zhang H., Xu B., Sun F., Zhang W. Lactate dehydrogenase and susceptibility to deterioration of mild COVID-19 patients: a multicenter nested casecontrol study. BMC Med. 2020; 18 (1): 168. https://doi.org/10.1186/s12916-020-01633-7

14. Liu X., Shi S., Xiao J. et al. Prediction of the severity of Corona Virus Disease 2019 and its adverse clinical outcomes. Jpn. J. Infect. Dis. 2020;10.7883/yoken.JJID.2020.194. https://doi.org/10.7883/yoken.JJID.2020.194

15. Davydova A.V. Biochemical analysis of blood in the differential diagnosis of liver diseases: a training manual for doctors; GBOU VPO IGMU of the Ministry of Health of Russia. Irkutsk: IGMU, 2013. 64 p. (In Russian)

16. Koryachkin V.A., Emanuel V.L., Strashnov V.I. Diagnostic activity: textbook for open source software. 2nd ed. M.: Yurayt Publishing House, 2019. 462 p. (In Russian)

17. Arablinsky A.V., Chechenov M.Kh. The possibilities of computed tomography and computed tomography angiography methods in the diagnosis of various severity of fatty liver. Diagnostic and interventional radiology. 2009; 3 (3): 9–19. (In Russian)

18. Mehdiyev S.N., Grinevich V.B., Kravchuk Yu.A., Brashenkova A.V. Non-alcoholic fatty liver disease: clinic, diagnosis and treatment. Attending doctor. 2008; 2: 29–37. (In Russian)

19. Prompetchara E., Ketloy C., Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac. J. Allergy Immunol. 2020; 38 (1): 1–9. https://doi.org/10.12932/AP-200220-0772

20. Feng G., Zheng K.I., Yan Q.Q., Rios R.S., Targher G., Byrne C.D., Poucke S.V., Liu W.Y., Zheng M.H. COVID-19 and Liver Dysfunction: Current Insights and Emergent Therapeutic Strategies. J. Clin. Transl. Hepatol. 2020; 8 (1): 18–24. https://doi.org/10.14218/JCTH.2020.00018

21. Prompetchara E., Ketloy C., Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac. J. Allergy. Immunol. 2020; 38 (1): 1–9. https://doi.org/10.12932/AP-200220-0772

22. Zhang X.J., Cheng X., Yan Z.Z. et al. An ALOX12-12- HETE-GPR31 signaling axis is a key mediator of hepatic ischemia-reperfusion injury. Nat. Med. 2018; 24 (1): 73–83. https://doi.org/10.1038/nm.4451

23. Li H., Xiang X., Ren H., Xu L., Zhao L., Chen X., Long H., Wang Q., Wu Q. Serum Amyloid A is a biomarker of severe Coronavirus Disease and poor prognosis. J. Infect. 2020; 80 (6): 646–655.

24. https://doi.org/10.1016/j.jinf.2020.03.035

25. Bangash M.N., Patel J., Parekh D. COVID-19 and the liver: little cause for concern. Lancet Gastroenterol. Hepatol. 2020; S2468-1253(20)30084-4. https://doi.org/10.1016/S2468-1253(20)30084-4

26. Temporary guidelines. Prevention, diagnosis and treatment of new coronavirus infection (COVID-19). Version 5 (04/08/2020). (In Russian)

27. Ivashkin V.T. (ed.). Diseases of the liver and biliary tract. M : Publishing house “M-Vesti”, 2002. 416 p. (In Russian)

28. Ivashkin V.T. Diseases of the liver and biliary tract: A Guide for Doctors. M.: Publishing House, 2005. 536 p. (In Russian)

29. O’Grady J.G., Alexander G.J., Hayllar K.M., Williams R. Early indicators of prognosis in fulminant hepatic failure. Gastroenterology. 1989; 97: 439–445.

30. Markova I.V., Afanasyev V.V., Tsybulkin E.K., Nezhentsev M.V. Clinical toxicology of children and adolescents: in 2 volumes. T. 1. SPb .Intermedika, 1998. 302 p. (In Russian)

31. Bessems J.G., Vermeulen N.P. Paracetamol (acetaminophen)-induced toxicity: molecular and biochemical mechanisms, analogues and protective approaches. Crit. Rev. Toxicol. 2001; 31: 55–138.

32. LiverTox: Clinical and Research Information on Drug- Induced Liver Injury [Internet]. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases; 2012. Chloroquine. [Updated 2017 Feb 2]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK548224/

33. Mehra M.R., Desai S.S., Ruschitzka F., Patel A.N. Hydroxychloroquine or chloroquine with or without a macrolide for treatment of COVID-19: a multinational registry analysis. Lancet. 2020. https://doi.org/10.1016/S0140-6736(20)31180-6

34. Ivashkin V.T., Baranovsky A.Yu., Raikhelson K.L., Palgova L.K., Maevskaya M.V., Kondrashina E.A., Marchenko N.V., Nekrasova T.P., Nikitin I.G. Medicinal lesions of the liver (clinical recommendations for doctors). Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2019 29 (1): 101–131. https://doi.org/10.22416/1382-4376-2019-29-1-101-131 (In Russian)

35. Belousov Yu.B. Medicinal liver damage associated with macrolides. Is the connection obvious? Russian Medical Journal. 2011; 19 (18): 1118. (In Russian)

36. Andrade R.J., Tulkens P.M. Hepatic safety of antibiotics used in primary care. J. Antimicrob. Chemother. 2011; 66 (7): 1431–1446.

37. Drug Safety Update volume 12, issue 12: July 2019: 2.

38. Levitova D.G., Gracheva S.A., Samoylov A.S., Udalov U.D., Praskurnichiy E.A., Parinov O.V. Safety Considerations for Drug Therapy COVID-19. Archive of Internal Medicine. 2020; 10 (3): 165–187. https://doi.org/10.20514/2226-6704-2020-10-3-165-187 (In Russian)

39. Xie H., Zhao J., Lian N., Lin S., Xie Q., Zhuo H. Clinical characteristics of non-ICU hospitalized patients with coronavirus disease 2019 and liver injury: A retrospective study. Liver Int. 2020; 10.1111/liv.14449. https://doi.org/10.1111/liv.14449


Review

For citations:


Vinokurov A.S., Nikiforova M.V., Oganesyan A.A., Vinokurova O.O., Yudin A.L., Yumatova E.A. COVID-19. Liver damage – visualization features and possible causes. Medical Visualization. 2020;24(3):26-36. (In Russ.) https://doi.org/10.24835/1607-0763-2020-3-26-36

Views: 2229


ISSN 1607-0763 (Print)
ISSN 2408-9516 (Online)