Preview

Medical Visualization

Advanced search

Brain perfusion in type 1 diabetes and cognitive dysfunction

https://doi.org/10.24835/1607-0763-940

Abstract

The purpose. To evaluate brain microcirculation using contrast and non-contrast magnetic resonance perfusion in patients with type 1 diabetes and cognitive dysfunction.

Material and methods. The study complies with generally accepted ethical rules. The study included 45 patients with type 1 diabetes and cognitive dysfunction and 20 patients without. Every patient included in the study was continuously monitoring glycemia with evaluation of variability coefficients. MRI was performed using a magnetic resonance imaging scanner Signa Creator “E”, GE Healthcare, 1.5 Tl, China: methods – dynamic contrast (“Gadovist”, w/w, bolusno, 5 ml) and arterial spin marks. SPSS Statistic software package was used for statistical analysis.

Results. Blood flow decreased in patients with type 1 type and cognitive dysfunction in the areas of white and gray matter of frontal, occipital and temporal lobes, and shells (p ≤ 0.05). According to perfusion data, hyperglycemia and the following glycemic variability indices have the greatest influence on cortical structures: glycemic index of prolonged glycemia increase, risk of hyperglycemia and hypoglycemia, glycemic rate of change, glycemic control quality indicator, and in case of non-contrast glycemic control quality and glycemic rate of change, risks of hypo and hyperglycemia. The main factors of changes in brain microcirculation are episodes of severe hypoglycemia in the anamnesis, duration of the disease, arterial hypertension, high cholesterol levels. No separate markers for the evaluation of cognitive disturbances in type 1 diabetes were revealed.

Conclusions. The basis of microcirculatory brain disorders in type 1 diabetes is the level of HbA1c and variability of glycemia as well as acute complications, duration of diabetes and associated conditions (arterial hypertension and hypercholesterolemia). The most important data were obtained during contrast perfusion.

About the Authors

Yu. G. Samoilova
Siberian State medical University
Russian Federation

Yulia G. Samoilova – Doct. of Sci. (Med.), Professor, Head of the Department of Children's Diseases

Moskovskii trakt, 2, Tomsk 634050



M. V. Matveeva
Siberian State medical University
Russian Federation

Maria V. Matveeva – Doct. of Sci. (Med.), Associate Professor, Department of Pediatric Medicine

Moskovskii trakt, 2, Tomsk 634050
Phone: +7-913-815-25-52



O. S. Tonkikh
Siberian State medical University
Russian Federation

Olga S. Tonkikh – Cand. of Sci. (Med.), Head of the Department of Tomographic Methods

Moskovskii trakt, 2, Tomsk 634050



N. Yu. Fimushkina
Siberian State medical University
Russian Federation

Natalia Yu. Fimushkina – Postgraduate student, Department of Department of Internal Medicine with a course of clinical pharmacology

Moskovskii trakt, 2, Tomsk 634050



References

1. Li W., Huang E., Gao S. Type 1 Diabetes Mellitus and Cognitive Impairments: A Systematic Review. J. Alzheimers. Dis. 2017; 57 (1): 29–36. http://doi.org/10.3233/JAD-161250

2. Forbes J.M., Cooper M.E. Mechanisms of diabetic complications. Physiol. Rev. 2013; 93 (1): 137–188.

3. Wu D., Wu C., Zhong Y. The association between paraoxonase 1 activity and the susceptibilities of diabetes mellitus, diabetic macroangiopathy and diabetic microangiopathy. J. Cell. Mol. Med. 2018; 22 (9): 4283–4291. http://doi.org/10.1111/jcmm.13711

4. Emanuel A.L., van Duinkerken E., Wattjes M.P., Klein M., Barkhof F., Snoek F.J., Diamant M., Eringa E.C., Ijzerman R.G., Serné E.H. The presence of cerebral white matter lesions and lower skin microvascular perfusion predicts lower cognitive performance in type 1 diabetes patients with retinopathy but not in healthy controls-A longitudinal study. Microcirculation. 2019; 26 (3): e12530. http://doi.org/10.1111/micc.12530

5. Page K.A., Arora J., Qiu M., Relwani R., Constable R.T., Sherwin R.S. Small decrements in systemic glucose provoke increases in hypothalamic blood flow prior to the release of counterregulatory hormones. Diabetes. 2009; 58: 448–452.

6. Song J., Cui S., Chen Y., Ye X., Huang X., Su H., Zhou Y., Liu X., Chen W., Shan X., Yan Z., Liu K. Disrupted Regional Cerebral Blood Flow in Children With NewlyDiagnosed Type 1 Diabetes Mellitus: An Arterial Spin Labeling Perfusion Magnetic Resonance Imaging Study. Front. Neurol. 2020; 11: 572.

7. Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Study Research Group, Jacobson AM, Musen G, Ryan CM, Silvers N, Cleary P, Waberski B, Burwood A, Weinger K, Bayless M, Dahms W, Harth J. Long-term effect of diabetes and its treatment on cognitive function. N. Engl. J. Med. 2007; 356 (18): 1842–1852. http://doi.org/10.1056/NEJMoa066397. Erratum in: N. Engl. J. Med. 2009; 361 (19): 1914.

8. Hardigan T., Ward R., Ergul A. Cerebrovascular complications of diabetes: focus on cognitive dysfunction. Clin. Sci. (Lond.). 2016; 130 (20): 1807–1822. http://doi.org/10.1042/CS20160397

9. Mogi M., Horiuchi M. Neurovascular coupling in cognitive impairment associated with diabetes mellitus. Circ. J. 2011; 75 (5): 1042–1048. http://doi.org/10.1253/circj.cj-11-0121

10. Toth P., Tarantini S., Csiszar A., Ungvari Z. Functional vascular contributions to cognitive impairment and dementia: mechanisms and consequences of cerebral autoregulatory dysfunction, endothelial impairment, and neurovascular uncoupling in aging. Am. J. Physiol. Heart Circ. Physiol. 2017; 312 (1): H1–H20. http://doi.org/10.1152/ajpheart.00581.2016

11. Lachin J.M., Bebu I., Bergenstal R.M., Pop-Busui R., Service F.J., Zinman B., Nathan D.M.; DCCT/EDIC Research Group. Association of Glycemic Variability in Type 1 Diabetes With Progression of Microvascular Outcomes in the Diabetes Control and Complications Trial. Diabetes Care. 2017; 40 (6): 777–783. http://doi.org/10.2337/dc16-2426.

12. Képes Z., Nagy F., Budai Á., Barna S., Esze R., Somodi S., Káplár M., Garai I., Varga J. Age, BMI and diabetes as independent predictors of brain hypoperfusion. Nucl. Med. Rev. 2021; 24 (1):11–15.

13. van Golen L.W., Huisman M.C., Ijzerman R.G., Hoetjes N.J., Schwarte L.A., Lammertsma A.A., Diamant M. Cerebral blood flow and glucose metabolism measured with positron emission tomography are decreased in human type 1 diabetes. Diabetes. 2013; 62 (8): 2898–2904. http://doi.org/10.2337/db12-1159

14. Bronson-Castain K.W., Bearse M.A. Jr, Neuville J., Jonasdottir S., King-Hooper B., Barez S., Schneck M.E., Adams A.J. Early neural and vascular changes in the adolescent type 1 and type 2 diabetic retina. Retina. 2012; 32: 92–102.

15. Brands A.M., Kessels R.P., de Haan E.H., Kappelle L.J., Biessels G.J. Cerebral dysfunction in type 1 diabetes: effects of insulin, vascular risk factors and blood-glucose levels. Eur. J. Pharmacol. 2004; 490:159–168.

16. Káplár M., Paragh G., Erdei A., Csongrádi E., Varga E., Garai I., Szabados L., Galuska L., Varga J. Changes in cerebral blood flow detected by SPECT in type 1 and type 2 diabetic patients. J. Nucl. Med. 2009; 50 (12): 1993-1998. http://doi.org/10.2967/jnumed.109.066068

17. Daulatzai M.A. Cerebral hypoperfusion and glucose hypometabolism: Key pathophysiological modulators promote neurodegeneration, cognitive impairment, and Alzheimer's disease. J. Neurosci. Res. 2017; 95 (4): 943–972. http://doi.org/10.1002/jnr.23777

18. Last D., Alsop D.C., Abduljalil A.M., Marquis R.P., de Bazelaire C., Hu K., Cavallerano J., Novak V. Global and regional effects of type 2 diabetes on brain tissue volumes and cerebral vasoreactivity. Diabetes Care. 2007; 30 (5): 1193–1199. http://doi.org/10.2337/dc06-2052;SongJ-2020

19. van Elderen S.G., Brandts A., van der Grond J., Westenberg J.J., Kroft L.J., van Buchem M.A., Smit J.W., de Roos A. Cerebral perfusion and aortic stiffness are independent predictors of white matter brain atrophy in type 1 diabetic patients assessed with magnetic resonance imaging. Diabetes Care. 2011; 34 (2): 459–463. http://doi.org/10.2337/dc10-1446

20. Mangia S., Tesfaye N., De Martino F., Kumar A.F., Kollasch P., Moheet A.A., Eberly L.E., Seaquist E.R. Hypoglycemia-induced increases in thalamic cerebral blood flow are blunted in subjects with type 1 diabetes and hypoglycemia unawareness. J. Cereb. Blood. Flow. Metab. 2012; 32 (11): 2084–2090. http://doi.org/10.1038/jcbfm.2012.117

21. Gejl M., Gjedde A., Brock B., Møller A., van Duinkerken E., Haahr H.L., Hansen C.T., Chu P.L., Stender-Petersen K.L., Rungby J. Effects of hypoglycaemia on working memory and regional cerebral blood flow in type 1 diabetes: a randomised, crossover trial. Diabetologia. 2018; 61 (3): 551–561. http://doi.org/10.1007/s00125-017-4502-1

22. Toprak H., Yetis H., Alkan A., Filiz M., Kurtcan S., Aralasmak A., Aksu M.Ş., Cesur Y. Relationships of DTI findings with neurocognitive dysfunction in children with Type 1 diabetes mellitus. Br J Radiol. 2016; 89 (1059): 20150680. http://doi.org/10.1259/bjr.20150680


Supplementary files

Review

For citations:


Samoilova Yu.G., Matveeva M.V., Tonkikh O.S., Fimushkina N.Yu. Brain perfusion in type 1 diabetes and cognitive dysfunction. Medical Visualization. 2021;25(3):66-72. (In Russ.) https://doi.org/10.24835/1607-0763-940

Views: 658


ISSN 1607-0763 (Print)
ISSN 2408-9516 (Online)