Biochemical basics of imaging in positron emission tomography in oncology. Part 3
https://doi.org/10.24835/1607-0763-2020-2-144-152
Abstract
This article provides an overview of the main literature data of biochemical basics and the clinical application of positron emission tomography, one of the promising technologies of radiation imaging in oncology.
In the final part, the biokinetics of radiopharmaceuticals that display the proliferative activity of malignant cells and the degree of hypoxia in the tumor focus are examined in detail. The results of studies devoted to assessing their effectiveness, the main indications for their use, the features of preparation for the study, as well as promising scientific developments in this industry are presented.
About the Authors
A. V. LeontyevRussian Federation
Alexey V. Leontyev – Cand. of Sci. (Med.), Head of Nuclear Medicine Department
3, 2nd Botkinsky pr.; Moscow 125284
N. A. Rubtsova
Russian Federation
Natalia A. Rubtsova – Doct. of Sci. (Med.), Head of Radiology Department
3, 2nd Botkinsky pr.; Moscow 125284
A. I. Khalimon
Russian Federation
Alexander I. Khalimon – radiologist of CT and MRI Department
3, 2nd Botkinsky pr.; Moscow 125284
G. F. Khamadeeva
Russian Federation
Gulnara F. Khamadeeva – Resident of Nuclear Medicine Department
3, 2nd Botkinsky pr.; Moscow 125284
M. T. Kuliev
Russian Federation
Magomed T. Kuliev – Resident of Oncology, Radiotherapy and Plastic Surgery Department of Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University) based at the Nuclear Medicine Department
3, 2nd Botkinsky pr.; Moscow 125284
I. V. Pylova
Russian Federation
Irina V. Pylova – Cand. of Sci. (Med.), nuclear medicine physician of Nuclear Medicine Department
3, 2nd Botkinsky pr.; Moscow 125284
T. N. Lazutina
Russian Federation
Tatyana N. Lazutina – Cand. of Sci. (Med.), nuclear medicine physician of Nuclear Medicine Department
3, 2nd Botkinsky pr.; Moscow 125284
A. A. Kostin
Russian Federation
Andrey A. Kostin – Doct. of Sci. (Med.), Professor, First Deputy of General director of “National Medical Research Center of Radiology” of the Ministry of Healthcare of Russia, Head of Urological, oncological and radiological department of Faculty of advanced training of medical workers of medical institute of The Peoples' Friendship University of Russia
3, 2nd Botkinsky pr.; Moscow 125284
A. D. Kaprin
Russian Federation
Andrey D. Kaprin – Full Member of the Russian Academy of Sciences, Corresponding member of Russian Academy of Education, Doct. of Sci. (Med.), Professor, Honored Doctor of the Russian Federation, Chief urologist of the Russian Academy of Sciences, General Director of “National Medical Radiological Research Center” of the Ministry of Healthcare of Russia, Head of Department of urology and surgical nephrology with a course of oncourology at the medical faculty of medical institute of The Peoples' Friendship University of Russia
References
1. Shields A.F., Grierson J.R., Dohmen B.M., Machulla H.J., Stayanoff J.C., Lawhorn-Crews J.M., Obradovich J.E., Muzik O., Mangner T.J. Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat. Med. 1998; 4: 1334–1336. http://doi.org/10.1038/3337
2. Barwick T., Bencherif B., Mountz J.M., Avril N. Molecular PET and PET/CT imaging of tumour cell proliferation using F-18 fluoro-L-thymidine: a comprehensive evaluation. Nuclear Med. Communications. 2009; 30 (12): 908–917. http://doi.org/10.1097/MNM.0b013e32832ee93b
3. Jensen M.M., Kjaer A. Monitoring of anti-cancer treatment with 18F-FDG and 18F-FLT PET: a comprehensive review of pre-clinical studies. Am. J. Nucl. Med. Mol. Imaging. 2015; 5 (5): 431–456.
4. Belt J.A., Marina N.M., Phelps D.A., Crawford C.R. Nucleoside transport in normal and neoplastic cells. Adv. Enzyme Regul. 1993; 33: 235–252.
5. Fanti S., Farsad M., Mansi L. PET-CT Beyond FDG. A Quick Guide to Image Interpretation. Berlin; Heidelberg: Springer-Verlag, 2010.
6. Pauleit D., Floeth F., Herzog H., Hamacher K., Tellmann L., Muller H.W., Coenen H.H., Langen K.-J. Whole-body distribution and dosimetry of O-(2-[18F]fluoroethyl)-ltyrosine. Eur. J. Nucl. Med. Mol. Imaging. 2003; 30: 519– 524. http://doi.org/10.1007/s00259-003-1118-0
7. Buck A.K., Hermann K., Shen C., Dechow T., Schwaiger M., Wester H.J. Molecular imaging of proliferation in vivo: positron emission tomography with [18F]fluorothymidine. Methods. 2009; 48 (2): 205–215. http://doi.org/10.1016/j.ymeth.2009.03.009
8. Soloviev D., Lewis D., Honess D., Aboagye E. [(18)F]FLT: an imaging biomarker of tumour proliferation for assessment of tumour response to treatment. Eur. J. Cancer. 2012; 48: 416–424. http://doi.org/10.1016/j.ejca.2011.11.035
9. Barwick T., Bencherif B., Mountz J.M., Avril N. Molecular PET and PET/CT imaging of tumour cell proliferation using F-18-fluoro-L-thymidine: a comprehensive evaluation. Nucl. Med. Communications. 2009; 30: 908–917. http://doi.org/10.1097/MNM.0b013e32832ee93b
10. Jensen M.M., Kjaer A. Monitoring of anti-cancer treatment with (18)F-FDG and (18)F-FLT PET: a comprehensive review of pre-clinical studies. Am. J. Nucl. Med. Mol. Imaging. 2015; 5 (5): 431–456.
11. Miyake K., Shinomiya A., Okada M., Hatakeyama T., Kawai N., Tamiya T. Usefulness of FDG, MET and FLT-PET studies for the management of human gliomas. J. Biomed. Biotechnol. 2012. 205818. http://doi.org/10.1155/2012/205818
12. Glaudemans A.W., Enting R.H., Heesters M.A., Dierckx R.A., van Rheenen R.W., Walenkamp A M., Slart R.H. Value of 11C-methionine PET in imaging brain tumours and metastases. Eur. J. Nucl. Med. Mol. Imaging. 2012. http://doi.org/10.1007/s00259-012-2295-5
13. Alauddin M.M. Journey of 2'-deoxy-2'-fluoro-5-methyl-1-β-D-arabinofuranosyluracil (FMAU): from Antiviral Drug to PET Imaging Agent. Curr. Med. Chem. 2018; 25 (16): 1867–1878. http://doi.org/10.2174/0929867325666171129125217
14. Sun H., Sloan A., Mangner T.J., Vaishampayan U., Muzik O., Collins J.M., Douglas K., Shields A.F. Imaging DNA synthesis with [18F]FMAU and positron emission tomography in patients with cancer. Eur. J. Nucl. Med. Mol. Imaging. 2005; 32 (1): 15–22.
15. Jadvar H., Chen K., Ukimura O. Targeted Prostate Gland Biopsy With Combined Transrectal Ultrasound, mpMRI, and 18F-FMAU PET/CT. Clin. Nucl. Med. 2015; 40 (8): e426– e428. http://doi.org/10.1097/rlu.0000000000000814
16. Varghese B., Velez E., Desai B., Jadvar H. Incidental Detection of Meningioma by 18F-FMAU PET/CT in a Patient With Suspected Prostate Cancer. Clin. Nucl. Med. 2018; 43 (7): e245–e246. http://doi.org/10.1097/RLU.0000000000002123
17. Clinical trial “18F-FMAU PET/CT in Diagnosing and Characterizing Prostate Cancer”. Available at: https:/clinicaltrials.gov/ct2/show/NCT02809690 (In Russian)
18. Semenza G.L., Jiang B.H., Leung S.W. et al. Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J. Biol. Chem. 1996; 271 (51): 32529–32537. http://doi.org/10.1074/jbc.271.51.32529
19. Semenza G.L., Roth P.H., Fang H.M., Wang G.L. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J. Biol. Chem. 1994; 269 (38): 23757–23763.
20. Lopci E., Grassi I., Chiti A., Nanni C., Cicoria G., Toschi L., Fonti C., Lodi F., Mattioli S., Fanti S. PET radiopharmaceuticals for imaging of tumor hypoxia: a review of the evidence. Am. J. Nucl. Med. Mol. Imaging. 2014; 4 (4): 365–384.
21. Li F., Jørgensen J.T., Madsen J., Kjaer A. Pharmacokinetic analysis of 64Cu-ATSM dynamic PET in human xenograft tumors in mice. Diagnostics. 2015; 5 (2): 96– 112. http://doi.org/10.3390/diagnostics5020096
22. Thorwarth D., Wack L.-J., Mönnich D. Hypoxia PET imaging techniques: data acquisition and analysis. Clin. Transl. Imaging. 2017; 5: 489–496. https://doi.org/10.1007/s40336-017-0250-y
23. Chen L., Zhang Z., Kolb H.C., Walsh J.C., Zhang J., Guan Y. 18F-HX4 hypoxia imaging with PET/CT in head and neck cancer: a comparison with 18F-FMISO. Nucl. Med. Commun. 2012; 33 (10): 1096–1102. https://doi.org/10.1097/MNM.0b013e3283571016
24. Shaughnessy F., Mariotti E., Shaw K.P., Eykyn T.R., Blower P.J., Siow R., Southworth R. Modification of intracellular glutathione status does not change the cardiac trapping of 64Cu (ATSM). EJNMMI Research. 2014; 4: 40. https://doi.org/10.1186/s13550-014-0040-8
25. Mortensen L.S., Johansen J., Kallehauge J., Primdahl H., Busk M., Lassen P., Alsner J., Sorensen B.S., Toustrup K., Jakobsen S., Petersen J., Petersen H., Theil J., Nordsmark M., Overgaard J. FAZA PET/CT hypoxia imaging in patients with squamous cell carcinoma of the head and neck treated with radiotherapy: results from the DAHANCA 24 trial. Radiother Oncol. 2012; 105: 14–20. https://doi.org/10.1016/j.radonc.2012.09.015
26. Kikuchi M., Yamane T., Shinohara S., Fujiwara K., Hori S.Y., Tona Y., Yamazaki H., Naito Y., Senda M. 18F-fluoromisonidazole positron emission tomography before treatment is a predictor of radiotherapy outcome and survival prognosis in patients with head and neck squamous cell carcinoma. Ann. Nucl. Med. 2011; 25 (9): 625–633. https://doi.org/10.1007/s12149-011-0508-9
27. Tateichi K., Tateishi U., Sato M., Yamanaka S., Kanno H., Murata H., Inoue T., Kawahara N. Application of 62Cudiacetyl-bis(N4-methylthiosemicarbazone) PET imaging to predict highly malignant tumor grades and hypoxiainducible factor-1a expression in patients with glioma. Am. J. Neuroradiol. 2013; 34: 92–99. https://doi.org/10.3174/ajnr.A3159
28. Grosu A.L., Souvatzoglou M., Roper B., Dobritz M., Wieden mann N., Jacob V., Wester H.J., Reischl G., Machulla H.J., Schwaiger M., Molls M., Piert M. Hypoxia imaging with FAZA-PET and theoretical considerations with regard to dose painting for individualization of radiotherapy in patients with head and neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 2007; 69: 541–551.
29. Melsens E., De Vlieghere E., Descamps B., Vanhove C., Kersemans K., De Vos F., Goethals I., Brans B., De Wever O., Ceelen W., Pattyn P. Hypoxia imaging with 18F-FAZA PETCT predicts radiotherapy response in esophageal adenocarcinoma xenografts. Radiat. Oncol. 2018; 13 (1): 39. https://doi.org/10.1186/s13014-018-0984-3
Review
For citations:
Leontyev A.V., Rubtsova N.A., Khalimon A.I., Khamadeeva G.F., Kuliev M.T., Pylova I.V., Lazutina T.N., Kostin A.A., Kaprin A.D. Biochemical basics of imaging in positron emission tomography in oncology. Part 3. Medical Visualization. 2020;24(2):144-152. (In Russ.) https://doi.org/10.24835/1607-0763-2020-2-144-152