Dysfunction of cerebellum functional connectivity between default mode network and cerebellar structures in patients with mild traumatic brain injury in acute stage. rsfMRI study
https://doi.org/10.24835/1607-0763-2020-2-131-137
Abstract
Mild traumatic brain injury (mTBI) is the most common neurological damage in children that's why it is extremely important to identify and analyze biomarkers that can help in predicting patient's treatment and recovery in period of mTBI. Aim of this study is to verify a hypothesis that functional connectivity disturbances between intact cerebellum and DMN nodes are included in symptomatic manifestation of mTBI.
Methods. 28 MR negative patients with mTBI were studied in age from 12 to 17 years (mean age – 14.7 years). The control group consisted of 23 healthy children. All MRI studies wereperformed on a Philips AchievadStream 3.0 T scanner equipped with a 32-channelPhilips dStream head coil. A 4 min rsfMRI gradient-echo echo planar imaging (EPI)sequence was acquired (TR = 3000 ms, echo time (TE) = 30 ms, 80 dynamics withdynamic scan time = 3 s). fMRI data were processed using functional connectivitytoolbox CONN.
Results. No statistically significant differences in correlation strengths between control group and group of patients were detected as a result of DMN analysis. Intergroup seed-basedcorrelation ROI analysis revealed statistically significant (p < 0.05) differencein links between DMN regions and vermis (cerebellum): positive link in control group and negative link in groupof patients.
Conclusions. The revealed changes in DMN neuronal connection and cerebellar regions in acute stage of mTBI patients can be an initial step of damages leading to cognitive deficit which can be developed in future.
About the Authors
M. V. UblinskiyRussian Federation
Maxim V. Ublinskiy – Cand. of Sсi. (Biol.), researcher
4, Kosygina str., 119334 Moscow
22, Bol’shaya Polyanka str., 119180 Moscow
N. A. Semenova
Russian Federation
Nataliya A. Semenova – Doct. of Sci. (Biol.), chief researcher; leading researcher Institute of biochemical physics RAS
4, Kosygina str., 119334 Moscow
22, Bol’shaya Polyanka str., 119180 Moscow
A. V. Manzhurtsev
Russian Federation
Andrei V. Manzhurtsev – Cand. of Sсi. (Phys.-Math.), researcher; researcher, Institute of biochemical physics RAS
4, Kosygina str., 119334 Moscow
22, Bol’shaya Polyanka str., 119180 Moscow
P. E. Menshchikov
Russian Federation
Petr E. Menshchikov – Cand. of Sсi. (Phys.-Math.), researcher, Institute of biochemical physics RAS
22, Bol’shaya Polyanka str., 119180 Moscow
A. N. Yakovlev
Russian Federation
Alexey N. Yakovlev – researcher, Institute of biochemical physics RAS
22, Bol’shaya Polyanka str., 119180 Moscow
T. A. Akhadov
Russian Federation
Tolibdzhon A. Akhadov – Professor, Doct. of Sci. (Med.), head of radiology department
4, Kosygina str., 119334 Moscow
References
1. Stein S.C., Spettell C. The Head Injury Severity Scale (HISS): a practical classification of closed-head injury. Brain Injury. 1995; 9 (5): 437–444. https://doi.org/10.3109/02699059509008203
2. Levin H.S., Diaz-Arrastia R.R. Diagnosis, prognosis, and clinical management of mild traumatic brain injury. The Lancet Neurology. 2015; 14 (5): 506–517. https://doi.org/10.1016/s1474-4422(15)00002-2
3. Hunter J.V., Wilde E.A., Tong K.A., Holshouser B.A. Emerging Imaging Tools for Use with Traumatic Brain Injury Research. J. Neurotrauma. 2012; 29 (4): 654–671. https://doi.org/10.1089/neu.2011.1906
4. Shenton M.E., Hamoda H.M., Schneiderman J.S., Bouix S., Pasternak O., Rathi Y., Vu M.-A., Purohit M.P., Helmer K., Koerte I., Lin A.P., Westin C.-F., Kikinis R., Kubicki M., Stern R.A., ZafonteR. A review of magnetic resonance imaging and diffusion tensor imaging findings in mild traumatic brain injury. Brain Imaging Behav. 2012; 6: 137–192. https://doi.org/10.1007/s11682-012-9156-5
5. Rutland-Brown W., Langlois J.A., Thomas K.E., Xi Y.L. Incidence of traumatic brain injury in the United States, 2003. J. Head Trauma Rehabil. 2006; 21 (6): 544–548.
6. Zhou Y., Milham M.P., Lui Y.W., Miles L., Reaume J., Sodick son D.K., Grossman R.I., Ge Y. Default-mode network disruption in mild traumatic brain injury. Radiology. 2012; 265 (3): 882–892. https://doi.org/10.1148/radiol.12120748
7. Cordes D., Haughton V.M., Arfanakis K., Carew J.D., Turski P.A., Moritz C.H., Quigley M.A., Meyerand M. E. Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data. Am. J. Neuroradiol. 2001; 22 (7): 1326–1333.
8. Gusnard D.A., Raichle M.E. Searching for a baseline: functional imaging and the resting human brain. Nat. Rev. Neurosci. 2001; 2 (10): 685. https://doi.org/10.1038/35094500
9. Raichle M.E., Snyder A.Z. A default mode of brain function: a brief history of an evolving idea. Neuroimage. 2007; 37 (4): 1083–1090. https://doi.org/10.1016/j.neuroimage.2007.02.041
10. Gilbert D.T., Wilson T.D. Prospection: Experiencing the future. Science. 2007; 317 (5843): 1351–1354. https://doi.org/10.1126/science.1144161
11. Buckner R.L., Andrews Hanna J.R., Schacter D.L. The brain's default network. Ann. N.Y. Acad. Sci. 2008; 1124 (1): 1–38. https://doi.org/10.1196/annals.1440.011
12. Sharp D.J., Beckmann C.F., Greenwood R., Kinnunen K.M., Bonnelle V., De Boissezon X., Powell J.H., Counsell S.J., Patel M.C., Leech R. Default mode network functional and structural connectivity after traumatic brain injury. Brain. 2011; 134 (8): 2233–2247. https://doi.org/10.1093/brain/awr175
13. Fife T.D. Persistent vertigo and dizziness after mild traumatic brain injury. Ann. N.Y. Acad. Sci. 2015; 1343: 97–105. https://doi.org/10.1111/nyas.12678
14. Park E., Ai J., Baker A.J. Cerebellar injury: clinical relevance and potential in traumatic brain injury research. Prog. Brain Res. 2007; 161: 327–338. https://doi.org/10.1016/s0079-6123(06)61023-6
15. Potts M.B., Adwanikar H., Noble-Haeusslein L.J. Models of traumatic cerebellar injury. Cerebellum. 2009; 8 (3): 211–221. https://doi.org/10.1007/s12311-009-0114-8
16. Spanos G.K., Wilde E.A., Bigler E.D., Cleavinger H.B., Fearing M.A., Levin H.S., Li X., Hunter J.V. Cerebellar atrophy after moderate-to-severe pediatric traumatic brain injury. Am. J. Neuroradiol. 2007; 28 (3): 537–542.
17. Mayer A.R., Mannell M.V., Ling J., Elgie R., Gasparovic C., Phillips J.P., Doezema D., aYeo R.A. Auditory orienting and inhibition of return in mild traumatic brain injury: A FMRI study. Hum. Brain Mapp. 2009; 30: 4152–4166. https://doi.org/10.1002/hbm.20836
18. Yang Z., Yeo R., Pena A., Ling J., Klimaj S., Campbell R., Doezema D., Mayer A. A fMRI Study of Auditory Orienting and Inhibition of Return in Pediatric Mild Traumatic Brain Injury. J. Neurotrauma. 2012; 26: 2124–2136. https://doi.org/10.1089/neu.2012.2395.
19. Mayer A.R., Yang Z., Yeo R.A., Pena A., Ling J.M., Mannell M.V., Stippler M.,Mojtahed K. A functional MRI study of multimodal selective attention following mild traumatic brain injury. Brain Imaging Behav. 2012; 6: 343–354. https://doi.org/10.1007/s11682-012-9178-z
20. ShumskayaE., AndriessenT.M., Norris D.G., VosP.E. Abnormal whole-brain functional networks in homo geneous acute mild traumatic brain injury. Neurology. 2012; 79 (2): 175–182. https://doi.org/10.1212/wnl.0b013e31825f04fb
21. Bonnelle V., Leech R., Kinnunen K.M., Ham T.E., Beckmann C.F., Boissezon X., Greenwood R.J., Sharp D.J. Default mode network connectivity predicts sustained attention deficits after traumatic brain injury. J. Neurosci. 2011; 31 (38): 13442–13451. https://doi.org/10.1523/jneurosci.1163-11.2011
22. Arenivas A., Diaz-Arrastia R., Spence J., Cullum C.M., Krishnan K., Bosworth C., Culver C., Kennard B., Marquez de la Plata C. Three approaches to investigating functional compromise to the default mode network after traumatic axonal injury. Brain Imaging Behav. 2014; 8 (3): 407–419. https://doi.org/10.1007/s11682-012-9191-2
23. Horak F.B., Diener H.C. Cerebellar control of postural scaling and central set in stance. J. Neurophysiol. 1994; 72 (2): 479–493. https://doi.org/10.1152/jn.1994.72.2.479
24. Eierud C., Craddock R.C., Fletcher S., Aulakh M., King-Casas B., Kuehl D., LaConte S.M. Neuroimaging after mild traumatic brain injury: review and meta-analysis. NeuroImage: Clinical. 2014; 4: 283–294. https://doi.org/10.1016/j.nicl.2013.12.009
25. Guskiewicz K. M., Mihalik J.P., Shankar V., Marshall S.W., Crowell D.H., Oliaro S.M., Ciocca M.F., Hooker D.N. Measurement of head impacts in collegiate football players: relationship between head impact biomechanics and acute clinical outcome after concussion. Neurosurgery. 2007; 61 (6): 1244–1253. https://doi.org/10.1097/scs.0b013e31816a2e83
26. McCrea M., Guskiewicz K.M., Marshall S.W., Barr W., Randolph C., Cantu R.C., Onate J.A., Yang J., Kelly J.P. Acute effects and recovery time following concussion in collegiate football players: the NCAA Concussion Study. JAMA. 2003; 290 (19): 2556–2563. https://doi.org/10.1001/jama.290.19.2556.
27. Tsai F.Y., Teal J.S., Itabashi H.H., Huprich J.E., Hieshima G.B., Segall H.D. Computed tomography of posterior fossa trauma. J. Comput. Assist. Tomogr. 1980; 4 (3): 291–305.
28. Soto-Ares G., Vinchon M., Delmaire C., Abecidan E., Dhelle mes P., Pruvo J.P. Cerebellar atrophy after severe traumatic head injury in children. Childs Nerv. Syst. 2001; 17 (4–5): 263–269. https://doi.org/10.1007/s003810000411
29. Fiez J.A., Petersen S.E., Cheney M.K., Raichle M.E. Impaired non-motor learning and error detection associated with cerebellar damage. A single case study. Brain. 1992; 115 (Pt 1): 155–178. https://doi.org/10.1093/brain/115.1.155
30. Middleton F.A., Strick P.L. Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science. 1994; 266 (5184): 458–461. https://doi.org/10.1126/science.7939688
31. Riga D., Matos M.R., Glas A., Smit A.B., Spijker S., Van den Oever M.C. Optogenetic dissection of medial prefrontal cortex circuitry. Frontiers Syst. Neurosci. 2014; 8: 230. https://doi.org/10.3389/fnsys.2014.00230
32. Van den Oever M.C., Spijker S., Smit A.B., De Vries T.J. Prefrontal cortex plasticity mechanisms in drug seeking and relapse. Neurosci. Biobehav. Rev. 2010; 35: 276–228. https://doi.org/10.1016/j.neubiorev.2009.11.016
33. Ito M. Cerebellar Control of the Vestibulo-Ocular Reflex-Around the Flocculus Hypothesis. Annual Rev. Neurosci. 1982; 5: 275–296. https://doi.org/10.1146/annurev.ne.05.030182.001423
34. Lisberger S. The neural basis for learning of simple motor skills. Science. 1988; 242 (4879): 728–735. https://doi.org/10.1126/science.3055293
Review
For citations:
Ublinskiy M.V., Semenova N.A., Manzhurtsev A.V., Menshchikov P.E., Yakovlev A.N., Akhadov T.A. Dysfunction of cerebellum functional connectivity between default mode network and cerebellar structures in patients with mild traumatic brain injury in acute stage. rsfMRI study. Medical Visualization. 2020;24(2):131-137. (In Russ.) https://doi.org/10.24835/1607-0763-2020-2-131-137