Evaluation of fMRI counting task efficiency for normal brain functional connectivity analisys during executive function examination
https://doi.org/10.24835/1607-0763-2020-2-119-130
Abstract
Aim: to explore functional connectivity of the normal brain during Stroop test modification and new suggested counting test performance.
Materials and methods. Data were acquired from 18 healthy volunteers who underwent fMRI examination on 3T scanner with Stroop test modification and new suggested counting test used as block paradigms.
Results. Functional connectivity analysis showed involvement of similar regions but with different distribution of positive correlations between them: interhemispheric significant positive correlations during Stroop test modification performance were found between anterior insular cortex, interhemispheric significant positive correlations during counting test performance were found between dorsolateral prefrontal cortices bilaterally and inferior parietal cortices bilaterally. Different distribution of significant correlations could be due to specificity of tasks. Comparative analysis showed significantly higher positive correlations with occipital cortex during Stroop test performance.
Conclusions. Received data allow alternative use of the abovementioned paradigms for executive functions investigation, with preference for counting test paradigm in patients with vision disturbances.
About the Authors
S, N. MorozovaRussian Federation
Sofya N. Morozova – Cand. of Sci. (Med.), research fellow in radiology department
80, Volokolamskoye Shosse, 125367, Moscow
E. I. Kremneva
Russian Federation
Elena I. Kremneva – Cand. of Sci. (Med.), major research fellow in radiology department
80, Volokolamskoye Shosse, 125367, Moscow
Z. Sh. Gadzhieva
Russian Federation
Zukhra Sh. Gadzhieva – Cand. of Sci. (Med.), neurologist of 3rd neurological department
80, Volokolamskoye Shosse, 125367, Moscow
B. M. Akhmetzyanov
Russian Federation
Bulat M. Akhmetzyanov – Cand. of Sci. (Med.), radiologist
58-2, Richard Sorge str., 450054, Ufa
M. V. Krotenkova
Russian Federation
Marina V. Krotenkova – Doct. of Sci. (Med.), head of the radiology department
80, Volokolamskoye Shosse, 125367, Moscow
L. A. Dobrynina
Russian Federation
Larisa A. Dobrynina – Doct. of Sci. (Med.), head of the 3rd neurological department
80, Volokolamskoye Shosse, 125367, Moscow
References
1. Krotenkova M.V., Bryukhov V.V., Morozova S.N. Kremneva E.I., Sergeeva A.N., Dreval M.V., Krotenkova I.A., Konovalov R.N., Suslin A.S. State-of-the-art neuroimaging techniques. Radiologia-praktika. 2017; 62 (2): 47–63. (In Russian)
2. Kremneva E.I., Zmeykina Ye.A., Morozova S.N., Suslin A.S., Konovalov R.N., Krotenkova M.V. Functional magnetic resonance tomography in neurology. M.: IP Martynov, 2016. 90 p. (In Russian)
3. Sharova E.V., Gavron A.A., Abdulaev A.A., Smirnov A.S., Fadeeva L.M., Chelyapina M.V., Zhavoronkova L.A., Boldyreva G.N., Kulikov M.A., Verkhlyutov V.M., Pronin I.N., Kornienko V.N. Resting state fMRI analysis experience using FSL in healthy subjects. Medical Visualization. 2017; 4: 6–17. (In Russian)
4. Rozovskaya R.I., Pechenkova E.V., Mershina E.A., Machinskaya R.I. fMRI Study of Retention of Images with Different Emotional Valence in the Working Memory. Psychology. Journal of the Higher School of Economics. 2014; 1 (11): 27–48. (In Russian)
5. Kulikova S.N., Peresedova A.V., Krotenkova M.V., Bryukhov V.V., Trifonova O.V., Zavalishin I.A. Longitudinal study of cortical reorganization and structural changes in relapsing remitting multiple sclerosis with hand palsy. Annals of Clinical and Experimental Neurology = Annaly klinicheskoy i eksperimental’noy nevrologii. 2014; 1 (8): 22–29. (In Russian)
6. Biswal B., Yetkin F.Z., Haughton V.M., Hyde J.S. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Res. Med. 1995; 34 (4): 537–541. https://doi.org/10.1002/mrm.1910340409
7. Seliverstova E.V., Seliverstov Yu.A., Konovalov R.N., Illarioshkin S.N. Resting state FMRI: new possibilities for brain physiology and pathology studies. Annals of Clinical and Experimental Neurology = Annaly klinicheskoy i eksperimental’noy nevrologii. 2013; 4 (7): 39–44. (In Russian)
8. Buchbinder B.R. Functional magnetic resonance imaging. Handb. Clin. Neurol. 2016; 135: 61–92. https://doi.org/10.1016/b978-0-444-53485-9.00004-0
9. Friston K.J., Frith C.D., Fletcher P., Liddle P.F., Frackowiak R.S. Functional topography: multidimensional scaling and functional connectivity in the brain. Cereb. Cortex. 1996; 6 (2): 156–164. https://doi.org/10.1093/cercor/6.2.156
10. Friston K.J., Worsley K.J., Frackowiak R.S., Mazziotta J.C., Evans A.C. Assessing the significance of focal activations using their spatial extent. Hum. Brain Mapp. 1994; 1 (3): 210–220. https://doi.org/10.1002/hbm.460010306
11. Foster B.L., Rangarajan V., Shirer W.R., Parvizi J. Intrinsic and task-dependent coupling of neuronal population activity in human parietal cortex. Neuron. 2015; 86: 578–590. https://doi.org/10.1016/j.neuron.2015.03.018
12. Cole M., Bassett D., Power J., Braver T., Petersen S. Intrinsic and Task-Evoked Network Architectures of the Human Brain. Neuron. 2014; 83: 238–251. https://doi.org/10.1016/j.neuron.2014.05.014
13. Spadone S., Penna S., Sestieri C., Betti V., Tosoni A., Perrucci M., Romani, G., Corbetta, M. Dynamic reorganization of human resting-state networks during visuospatial attention. Proc. Natl. Acad. Sci. USA. 2015; 112: 8112–8117. https://doi.org/10.1073/pnas.1415439112
14. Kaufmann T., Alnæs D., Brandt C., Doan N., Kauppi K. Task modulations and clinical manifestations in the brain functional connectome in 1615 fMRI datasets. Neuro-Image. 2017; 147: 243–252. https://doi.org/10.1016/j.neuroimage.2016.11.073
15. Shine J., Bissett P., Bell P., Koyejo O., Balsters J. The dyna mics of functional brain networks: Integrated network states during cognitive task performance. Neuron. 2016; 92: 544–554. https://doi.org/10.1016/j.neuron.2016.09.018
16. Krienen F., Yeo T., Buckner R. Reconfigurable taskdependent functional coupling modes cluster around a core functional architecture. Philosophical Transactions Royal Soc. B. Biol. Sci. 2014; 369: 20130526. https://doi.org/10.1098/rstb.2013.0526
17. Gonzalez-Castillo J., Hoy C.W., Handwerker D., Robinson M.E., Buchanan L.C., Saad Z.S., Bandettini P. Tracking ongoing cognition in individuals using brief, whole-brain functional connectivity patterns. Proc. Nat. Acad. Sci. 2015; 112: 8762–8767. https://doi.org/10.1073/pnas.1501242112
18. Sadaghiani S., Poline J.-B., Kleinschmidt A., D’Esposito M. Ongoing dynamics in large-scale functional connectivity predict perception. Proc. Nat. Acad. Sci. 2015; 112: 8463–8468. https://doi.org/10.1073/pnas.1420687112
19. Lebedeva I.S., Kaleda V.G., Barkhatova A.N., Abramova L.I., Golimbet V.E., Petryajkin A.V., Semenova N.A., Akhadov T.A. Neuropgysiological markers of cognitive disorders in paroxysmal schizophrenia. Psychiatry. 2010; 4 (46): 7–11. (In Russian)
20. Luriya A.R. Highest cortical functions. 2nd. MSU, 1980. 271 p. (In Russian)
21. Lezak M.D. Neuropsychological Assessment. 2nd ed. New York: Oxford University Press, 1983. https://doi. org/10.1177/073428298600400111
22. Semenova O.A. Problems of studying executive functions of mental activity in humans. Human physiology. 2005; 6 (31):715–723. https://doi.org/10.1007/s10747-005-0120-2 (In Russian)
23. Camilleri J.A., Müller V.I., Fox P., Laird A.R., Hoffstaedter F., Kalenscher T., Eickhoff S.B., Definition and characterization of an extended multiple-demand network. NeuroImage. 2018: 138–147. https://doi.org/10.1016/j.neuroimage.2017.10.020
24. Crittenden B.M., Mitchell D.J., Duncan J. Task Encoding across the Multiple Demand Cortex Is Consistent with a Frontoparietal and Cingulo-Opercular Dual Networks Distinction. J. Neurosci. 2016; 36 (23): 6147–6155. https://doi.org/10.1523/jneurosci.1466-17.2017
25. Amato M.P., Portaccio E., Goretti B., Zipoli V., Ricchiuti L., De Caro M. F., Patti F., Vecchio R., Sorbi S., Trojano M. The Rao’s brief repeatable battery and stroop test: normative values with age, education and gender corrections in an Italian population. Mult. Scler. 2006; 12: 787–793. https://doi.org/10.1177/1352458506070933
26. Fera F., Nicoletti G., Cerasa A., Romeo N., Gallo O., Gioia M.C., Arabia G., Pugliese P., Zappia M., Quattrone A. Dopaminergic modulation of cognitive interference after pharmacological washout in Parkinson’s disease. Brain Res. Bull. 2007; 74: 75–83. https://doi.org/10.1016/j.brainresbull.2007.05.009
27. Scarpina F., Tagini S. The stroop color and word test. Front. Psychol. 2017; 8: 1–8. https://doi.org/10.3389/fpsyg.2017.00557
28. Langenecker S.A. FMRI of healthy older adults during Stroop interference. NeuroImage. 2004; 21: 192–200. https://doi.org/10.1016/j.neuroimage.2003.08.027
29. Glascher J., Adolphs R., Damasio H., Bechara A., Rudrauf D., Calamia M. et al. Lesion mapping of cognitive control and value-based decision making in the prefrontal cortex. Proc. Natl. Acad. Sci. U.S.A. 2012; 109: 14681– 14686. https://doi.org/10.1073/pnas.1206608109
30. Esterman M., Noonan S.K., Rosenberg M., Degutis J. In the zone or zoning out? Tracking behavioral and neural fluctuations during sustained attention. Cereb. Cortex. 2013; 23: 2712–2723. https://doi.org/10.1093/cercor/bhs261
31. Hellyer P.J., Shanahan M., Scott G., Wise R.J., Sharp D.J., Leech R. The control of global brain dynamics: opposing actions of frontoparietal control and default mode networks on attention. J. Neurosci. 2014; 34: 451–461. https://doi.org/10.1523/jneurosci.1853-13.2014
32. Song Y., Hakoda Y. An fMRI study of the functional mecha nisms of Stroop/reverse-Stroop effects. Behav. Brain. Res. 2015; 290: 187–196. https://doi.org/10.1016/j.bbr.2015.04.047
33. Yarets M.Yu., Sharova E.V., Smirnov A.S., Pogosbekyan Ye.L., Boldyreva G.N., Zaytsev O.S., Enikolopova O.S. Structural and functional organization of counting in esecutive functions examination. I.P. Pavlov Journal of Higher Nervous Activity = Zh Vyssh Nerv Deiat IP Pavlova. 2018; 2 (68): 1–14 (In Russian)
34. Burbaud P., Camus O., Caille J.M., Biolac B., Allard M. Influence of individual strategies on brain activation pattern during cognitive tasks. J. Neuroradiol. 1999; 26: 59–65. https://doi.org/10.1016/s0304-3940(00)01099-5
35. Sveljo O., Culić M., Koprivšek K., Lučić M. The functional neuroimaging evidence of cerebellar involvement in the simple cognitive task. Brain Imaging Behav. 2014; 8 (4): 480–486. https://doi.org/10.1007/s11682-014-9290-3
36. Šveljo O., Koprivšek K., Lučić M., Prvulović N. Counting and language. Prilozi. 2012; 33 (1): 411–418.
37. Donaldson D.I., Buckner R.L. Effective paradigm design. In: Jezzard, P., Matthews, P.M., Smith, S.M. (Eds.). Functional MRI, an Introduction to Methods. Oxford: Oxford University Press, 2003. https://doi.org/10.1093/acprof:oso/9780192630711.003.0009
38. Khomskaya E.D., Neuropsykhologiya.4th . SPb.: Piter, 2005. 496 p. (In Russian)
39. Whitfield-Gabrieli S., Nieto-Castanon A. Conn: A functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connectivity. 2012; 2 (3): 125–141. https://doi.org/10.1089/brain.2012.0073
40. Fonov V.S., Evans A.C., McKinstry R.C., Almli C.R., Collins D.L. Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. NeuroImage. 2009; 47 (1): 102. https://doi.org/10.1016/s1053-8119(09)70884-5
41. Stiers P., Goulas A. Functional connectivity of task context representations in prefrontal nodes of the multiple demand network. Brain Structure and Function. 2018; 223 (5): 2455–2473. https://doi.org/10.1007/s00429-018-1638-9
42. Harrison B.J., Shaw M., Yücel M., Purcell .R, Brewer W.J., Strother S.C., Egan G.F., Olver J.S., Nathan P.J., Pantelis C. Functional connectivity during Stroop task performance. Neuroimage. 2005; 24 (1): 181–191. https://doi.org/10.1016/j.neuroimage.2004.08.033
43. Anderson J.S., Shah L.M., Nielsen J.A. Specialty imaging. Functional MRI. First edition. Amirsys Publishing, Inc, 2014. 298 p.
44. Stoeckel C., Gough P.M., Watkins K.E., Devlin J.T. Supramarginal gyrus involvement in visual word recognition. Cortex. 2009;
45. (9): 1091–1096. https://doi.org/10.1016/j.cortex.2008.12.004 45. Segal E., Petrides M. Functional activation during reading in relation to the sulci of the angular gyrus region. Eur. J. Neurosci. 2013; 38 (5): 2793–2801. https://doi.org/10.1111/ejn.12277
46. Seghier M.L. The Angular Gyrus: Multiple Functions and Multiple Subdivisions. The Neuroscientist. 2013; 19 (1): 43–61. https://doi.org/10.1177/1073858412440596
47. Onitsuka T., Shenton M.E., Salisbury D.F., Dickey C.C., Kasai K., Toner S.K., Frumin M., Kikinis R., Jolesz F.A., McCarley R.W. Middle and Inferior Temporal Gyrus Gray Matter Volume Abnormalities in Chronic Schizophrenia: An MRI Study. Am. J. Psychiatry. 2004; 161: 1603–1611. https://doi.org/10.1176/appi.ajp.161.9.1603
48. Tailor K.S., Seminowicz D.A., Davis K.D. Two systems of resting state connectivity between the insula and cingulate cortex. Hum. Brain Mapp. 2009; 30 (9): 2731–2745. https://doi.org/10.1002/hbm.20705
49. Luria A.R. Higher Cortical Functions in Man. Moscow University Press, 1962. Library of Congress Number: 65-11340. (In Russian)
50. Blummenfeld R.S., Parks C.M., Yonelinas A.P., Ranganath C. Putting the pieces together: the role of dorsolateral prefrontal cortex in relational memory encoding. J. Cogn. Neurosci. 2011; 23 (1): 257–265. https://doi.org/10.1162/jocn.2010.21459
51. Koechlin E., Hyafil A. Anterior prefrontal function and the limits of human decision making. Science. 2007; 318: 594–598. https://doi.org/10.1126/science.1142995
52. Warburton E., Wise R.J.S., Price C.J., Weiller C., Hadar U., Ramsay S., Frackowiak R.J.S. Noun and verb retrieval by normal subjects: studies with PET. Brain. 1996; 119: 159–179. https://doi.org/10.1093/brain/119.1.159
Review
For citations:
Morozova S.N., Kremneva E.I., Gadzhieva Z.Sh., Akhmetzyanov B.M., Krotenkova M.V., Dobrynina L.A. Evaluation of fMRI counting task efficiency for normal brain functional connectivity analisys during executive function examination. Medical Visualization. 2020;24(2):119-130. (In Russ.) https://doi.org/10.24835/1607-0763-2020-2-119-130