Preview

Medical Visualization

Advanced search

MRI and CT-venography in the diagnosis of hemodynamic disturbances in patients with chronic lower extremities venous disorders. Part III. Possibilities of CT-investigation in diagnosing of venous hemodynamics violations

https://doi.org/10.24835/1607-0763-902

Abstract

As a result of solving a large number of technical problems (increasing the area of anatomical coverage and scanning speed, increasing the signal-to-noise ratio, improving spatial and contrast resolution, building a color image quality in 3D mode, significantly reducing the radiation dose), the method of computed tomography imaging of the vascular system has won a leading position in the world today. However, if CT Angiography is used everywhere and daily in the diagnosis of arterial pathology, this method has not yet received clinical recognition in patients with chronic venous diseases.

This review of the literature analyzes the scientific data published in the world on the results of CT Venography. Methods of indirect and direct contrast CT Venography are described. The possibility of using contrast CT Venography in the diagnosis of deep vein thrombosis is shown, where the accuracy, sensitivity and specificity of the method according to foreign authors is up to 97.9%, 96.8% and 100%, respectively. This method acquires particular importance in the diagnosis of pelvic vein thrombosis and inferior Vena cava, where the informative value of USDS is lower. The second clinical direction that is actively developing today is the combined use of CT Venography and CT Angiopulmonography in the diagnosis of a deadly complication of pulmonary embolism. The prospects of these attempts are preferable by the following advantages: the single-time study and the absence of the need for additional administration of contrast agents, the speed of scanning, and obtaining additional information about the state of the peripheral venous system in patients with venous thromboembolism.

Another and irreplaceable tool of contrast-enhanced CT Venography can become in the study of the features of the topographic and anatomical structure of the venous bed. Using their own research, the authors demonstrate the possibilities of direct CT Venography in the visualization of the venous system of the lower extremities.

The need for more accurate topical diagnostics with 3D visualization of the venous system of the lower extremities and pelvis by CT-Venography is due to the growing interest in recent years of vascular and interventional surgeons to test and more actively implement endovasal methods of correction of venous blood flow in phlebological practice.

About the Authors

E. V. Shajdakov
Bekhterev Institute of human brain of the Russian Academy of Sciences (RAS)
Russian Federation

Evgenij V. Shajdakov – Doct. of Sci. (Med.), Professor, Bekhterev Institute of human brain of the Russian Academy of Sciences (RAS); President of the Saint Petersburg Association of Phlebologists (SPSP).

9, Acad. Pavlov str., St. Petersburg 197376.


Competing Interests:

No



A. B. Sannikov
Innovative Diagnostic Clinic “MEDICA”; Pirogov Russian National Research Medical University of the Ministry of Health of Russia
Russian Federation

Aleksandr B. Sannikov – Cand. of Sci. (Med.), assistant of chief physician, vascular surgeon of the Clinic of Innovative Diagnostics “Medika”; assistant of professor of the Department of additional professional education of health professionals of the Pirogov Russian National Research Medical University of the Ministry of Health of Russia.

24, Vokzal'naya str., Vladimir 1600031; 1, Ostrivityanova str., Moscow 117997.

Phone: +7-999-776-47-73


Competing Interests:

No



V. M. Emelyanenko
Pirogov Russian National Research Medical University of the Ministry of Health of Russia
Russian Federation

Vladimir M. Emelyanenko – Doct. of Sci. (Med.), Professor, chief of the department of additional professional education of health professionals of the Pirogov Russian National Research Medical University of the Ministry of Health of Russia.

1, Ostrivityanova str., Moscow 117997.


Competing Interests:

No



M. A. Rachkov
Innovative Diagnostic Clinic “MEDICA”
Russian Federation

Mihail A. Rachkov – radiologist of the СТ office of the Clinic of Innovative Diagnostics “Medika”.

24, Vokzal'naya str., Vladimir 1600031.


Competing Interests:

No



L. N. Kryukova
Innovative Diagnostic Clinic “MEDICA”
Russian Federation

Lyudmila N. Kryukova – radiologist of the MRI office of the Clinic of Innovative Diagnostics “Medika”.

24, Vokzal'naya str., Vladimir 1600031.


Competing Interests:

No



A. E. Baranova
Innovative Diagnostic Clinic “MEDICA”
Russian Federation

Anna E. Baranova – radiologist of the MRI office of the Clinic of Innovative Diagnostics “Medika”.

24, Vokzal'naya str., Vladimir 1600031.


Competing Interests:

No



References

1. Skutta B., Furst G., Eilers J., Ferbert A., Kuhn F.P. Intracranial stenoocclusive disease: double-detector helical CT angiography versus digital subtraction angiography. Am. J. Neuroradiol. 1999; 20 (5): 791–779. PMID 10369348. https://www.ncbi.nlm.nih.gov

2. Kaatee R., Beek F.J., de Lange E.E. Renal artery stenosis: detection and quantification with spiral CT angiography versus optimized digital subtraction angiography. Radiology. 1997; 205: 121–127. https://doi.org/10.1148/radiology.205.1.9314973

3. Fishman E.K. From the RSNA Refresher Courses. RadioGraphics. 2001; 21 (1): 3–16. https://doi.org/10.1148/radiographics.21.suppl_1.g01oc23s3

4. Kim K.I., Muller N.L., Mayo J.R. Clinically suspected pulmonary embolism: utility of spiral CT. Radiology. 1999; 210 (3): 693–697. https://doi.org/10.1148/radiology.210.3.r99mr01693

5. Lawrence J.A., Kim D., Kent K.C., Stehling M.K., Rosen M.P., Raptopoulos V. Lower extremity spiral CT angiography versus catheter angiography. Radiology. 1995; 194: 903– 908. https://doi.org/10.1148/radiology.194.3.7862999

6. Rieker O., Duber C., Neufang A., Pitton M., Schweden F., Thelen M. CT angiography versus intraarterial digital subtraction angiography for assessment of aortoiliac occlusive disease. Am. J. Roentgenol. 1997; 169: 1133– 1138. https://doi.org/10.2214/ajr.169.4.9308477

7. Rieker O., Duber C., Schmiedt W., von Zitzewitz H., Schweden F., Thelen M. Prospective comparison of CT angiography of the legs with intraarterial digital subtraction angiography. Am. J. Roentgenol. 1996; 166: 269–276. https://doi.org/10.2214/ajr.166.2.8553929

8. Donnelly L.F., Frush D.P., Nelson R.C. Multislice helical CT to facilitate combined CT of the neck, chest, abdomen and pelvis in children. Am. J. Roentgenol. 2000; 174 (6): 1620–1622. https://doi.org/10.2214/ajr.174.6.1741620

9. Lawler L.P., Fishman E.K. Multi-detector row CT of thoracic disease with emphasis on 3-D volume rendering and CT angiography. RadioGraphics. 2001 21 (5): 1257– 1273. https://doi.org/10.1148/radiographics.21.5.g01se021257

10. Siegel M.J. Multislice computed tomography: Practice Guidelines. Berlin; Heidelberg: Springer-Verlag, 2004. https://www.link.springer.com. https://doi.org/10.1007/978-3-642-18758-2_3

11. Claussen C.D., Elliot K., Marincek B., Reiser M. Multislice CT. Springer-Link, 2004. https://doi.org/10.1007/978-3-642-18758-2

12. Rubin G.D., Zarins C.K. MR and Spiral CT Imaging of Low Extremity Occlusive Disease. J. Surg. Clin. N. Am. 1995; 75 (4): 607–619. https://doi.org/10.1016/s0039-6109(16)46685-5

13. Rubin G.D., Schmidt A.J., Logan L.J., Sofilos M.C. Multidetector row CT angiography of lower extremity arterial inflow and runoff: initial experience. Radiology. 2001; 221: 146–158. https://doi.org/10.1148/radiol.2211001325

14. Fleischmann D., Rubin G.D., Paik D.S., Yen S.Y., Hifiker P.R. Stair-step artifacts with single versus multiple detectorrow helical CT. Radiology. 2000; 216: 185–196. https://doi.org/10.1148/radiology.216.1.r00jn13185

15. Rubin G.D., Shiau M.C., Leung A.N., Kee S.T., Logan L.J., Sofilos M.C. Aorta and iliac arteries: single versus multiple detector-row helical CT angiography. Radiology. 2000; 215: 670–676. https://doi.org/10.1148/radiology.215.3.r00jn18670

16. Martin M.L., Tay K.H., Flak B., Fry P.D. Multidetector CT Angiography of the Aortoiliac System and Lower Extremities: A Prospective Comparison with Digital Subtraction Angiography. Am. J. Roentgenol. 2003; 180 (4): 1085– 1091. https://doi.org/10.2214/ajr.180.4.1801085

17. Owen R.S., Carpenter J.P., Baum R.A., Perloff L.J., Cope C. Magnetic resonance imaging of angiographically occult runoff vessels in peripheral arterial occlusive disease. N. Engl. J. Med. 1992; 326: 1577–1581. https://doi.org/10.1056/nejm199206113262428

18. Flohr T.G., Schaller S., Stierstorfer K., Bruder H., Ohnesorge B.M., Schoepf U.J. Multi-Detector Row CT Systems and Image-Reconstruction Techniques. J. Radiol. 2005; 235: 756–773. https://doi.org/10.1148/radiol.235304037

19. Polacin A., Kalender W.A., Marchal G. Evaluation of section sensitivity profiles and image noise in spiral CT. J. Radiol. 1992; 185: 29–35. https://doi.org/10.1148/radiology.185.1.1523331

20. Rubin G.D., Napel S. Increased scan pitch for vascular and thoracic spiral CT. J. Radiol. 1995; 197: 316–317. https://doi.org/10.1148/radiology.197.1.316-c

21. Pelberg R., Mazur W. Vascular CT Angiography Manual. Springer, 2010. ISBN 978-1-84996-260-5. https://www. springer.com

22. Kachelriess M., Ulzheimer S., Kalender W. ECG-correlated image reconstruction from subsecond multi-slice spiral CT scans of the heart. Med. Phys. 2000; 27: 1881–1902. https://doi.org/10.1118/1.1286552

23. Ohnesorge B., Flohr T., Becker C. Cardiac imaging by means of electrocardiographically gated multisection spiral CT: initial experience. J. Radiol. 2000; 217: 564–571. https://doi.org/10.1148/radiology.217.2.r00nv30564

24. Flohr T., Bruder H., Stierstorfer K., Simon J., Schaller S., Ohnesorge B. New technical developments in multislice CT. Sub-multimeter 16-slice scanning and increased gantry rotation speed for cardiac imaging. Rofo. 2002; 174: 1022–1027. https://doi.org/10.1055/s-2002-32930

25. Lell M., Wildberger J., Heuschmid M. CT-angiography of carotid artery: first results with a novel 16-slice spiral CT scanner. Rofo. 2002; 174: 1165–1069. https://doi.org/10.1055/s-2002-33935

26. Nieman K., Cademartiri F., Lemos P.A., Raaijmakers R., Pattynama P.M. Reliable noninvasive coronary angiography with fast submillimeter multislise spiral computed tomography. Circulation. 2002; 106: 2051–2054. https://doi.org/10.1161/01.cir.0000037222.58317.3d

27. Pennell D.J., Sechtem U.P., Prasad S., Rademakers F.E. Cardiovascular Magnetic Resonance. Book Chapter published in The ESC Textbook of Cardiovascular Medicine. 2009. https://doi.org/10.1093/med/9780199566990.003.005

28. Plein S., Greenwood J., Ridway J.P. Cardiovascular MR Manual. Springer, 2015. ISBN 978-3-319-20940-1. https://www.springer.com

29. Sidorova E., Kondratyev E., Shirocov V., Karmazanovsky G. Minimalisation of contrast media volume with 256-slice CT angiography of the abdominal aorta and arteries of low extremities. Congress ECR. 2010. https://doi.org/10.1594/ecr2010/C-3053

30. The 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases in collaboration with the European Society for Vascular Surgery. Eur. J. Vasc. and Endovasc. Surg. 2018; 55 (3). https://doi.org/10.1016/j.ejvs.2018.03.004

31. Mukherjee D., Rajagopalan S. CT and MR Angiography of the Peripheral Circulation. Practical Approach with Clinical Protocols. CRC Press, 2019. ISBN 9780367389062. https://www.routiedge.com

32. Kalva S.P., Jagannathan J.P., Hahn P.F., Wicky S.T. Venous thromboembolism: indirect CT venography during CT pulmonary angiographyshould the pelvis be imaged? Radiology. 2008; 246: 605–611. https://doi.org/10.1148/radiol.2462070319

33. Kelly A.M., Patel S, Carlos R.C., Cronin P., Kazerooni E.A. Multidetector row CT pulmonary angiography and indirect venography for the diagnosis of venous thromboembolic disease in intensive care unit patients. Acad. Radiol. 2006; 13: 486–495. https://doi.org/10.1016/j.acra.2006.01.041

34. Kulkarni N.M., Sahani D.V., Desai G.S., Kalva S.P. Indirect computed tomography venography of the lower extremities using single-source dual-energy computed tomography: advantage of Low-Kiloelectron volt monochromatic images. J. Vasc. Interv. Radiol. 2012; 23: 879–886. https://doi.org/10.1016/j.jvir.2012.04.012

35. Coche E.E., Hamoir X.L., Hammer F.D., Hainaut P., Goffette P.P. Using dual-detector helical CT angiography to detect deep venous thrombosis in patients with suspicion of pulmonary embolism: diagnostic value andadditional findings. Am. J. Roentgenol. 2001; 176: 1035–1039. https://doi.org/10.2214/ajr.176.4.1761035

36. Das M., Muhlenbruch G., Mahnken A.H. Optimized image reconstruction for detection of deep venous thrombosis at multidetector-row CT venography. Eur. Radiol. 2006; 16: 269–275. https://doi.org/10.1007/s00330-005-2868-9

37. Gregory Cheng. Deep Vein Thrombosis, edited by Dr. Gregory Cheng. “INTECH”, 2012. https://doi.org/10.5772/1171

38. Reicherta M., Henzlera T., Krissak R., Apfaltrer P., Huck K., Buesing K., Sueselbeck T. Venous thromboembolism: Additional diagnostic value and radiation dose of pelvic CT venography in patients with suspected pulmonary embolism. Eur. J. Radiol. 2011; 80: 50–53. https://doi.org/10.1016/j.ejrad.2010.12.101

39. Uhl J.F., Gillot C. Embriology and threedimensional anatomy of the superficial venous system of the lower limbs. Phlebology. 2007; 22 (5): 194–206. https://doi.org/10.1258/026835507782101717

40. Uhl J.F. Three-dimensional modelling of the venous system by direct multislice helical computed tomography venography: technique, indications and results. Phlebology. 2012; 27: 270–288. https://doi.org/10.1258/phleb.2012.012j07

41. Slater S., Oswal D., Bhartia B. A retrospective study of the value of indirect CT venography: a British perspective. Br. J. Radiol. 2012; 85: 917–920. https://doi.org/10.1259/bjr/28355108

42. Stehling M.K., Rosen M.P., Weintraub J., Kim D., Raptopoulos V. Spiral CT Venography of the lower extremity. Am. J. Roentgenol. 1994; 163: 451–453. https://doi.org/10.2214/ajr.163.2.8037048

43. Askerhanov R.G., Kazakmurzaev M.A., Mahatilov M.G. Method multislice computed tomography venography of the veins of the lower extremities. Patent RU №2548139 С2, priority 22.08.2013, date of publication 27.02.2015, Bulletin №6. https://www.fips.ru (In Russian)

44. Wan-Yin Shi, Li-Wei Wang, Shao-Suan Wang, Xin-Dao Yin, Jian-Ping Gu. Combined Direct and Indirect CT Venography (Combined CTV) in Detecting Lower Extremity Deep Vein Thrombosis. Medicine. 2016; 95 (11): 1–7. https://doi.org/10.1097/md.0000000000003010

45. Sevitt S., Gallagher N. Venous thrombosis and pulmonary embolism. A clinic-pathological study in injured and burned patient. Br. J. Surg. 1961; 48: 475–489. https://doi.org/10.1002/bjs.18004821103

46. Mozer K.M. Frequent asymptomatic pulmonary embolism in patients with deep venous thrombosis. JAMA. 1994; 271 (3): 223–225. https://doi.org/10.1001/jama.271.3.223

47. Johnson M.S. Current strategies for diagnosis of pulmonary embolism. J. Vasc. Interv. Radiol. 2002; 13: 13– 23. https://doi.org/10.1016/s1051-0443(07)60003-7

48. Blachere H., Latrabe V., Montaudon M., valli N, Coouffinal T., Raherisson C., Leccia F., Laurent F. Pulmonary embolism revealed on helical CT angiography: comparison with ventilation-perfusion radionuclide lung scanning. Am. J. Roentgenol. 2000; 174: 1041–1047. https://doi.org/10.2214/ajr.174.4.1741041

49. Diagnostics and treatment of Chronic Venous Disease: Guidelines of Russian Phlebology Association clinical guidelines for the diagnosis and treatment of chronic venous diseases. Flebologiya. Journal of Venous Disorders. 2018; 3: 146–240. ISSN 1997-6976. https://doi.org/10.17116/flebo20187031146 (In Russian)

50. Russian clinical guidelines for the diagnosis, treatment and prevention of venous thromboembolic complications. Flebologiya. Journal of Venous Disorders. 2015; 9 (2): 52 p. ISSN 1997-6976. https://www.mediasphera.ru (In Russian)

51. Postnova N.A. Ultrasound diagnosis of venous diseases of the lower extremities. М.: “STROM”, 2011. ISBN 978-5-900094-37-3. (In Russian)

52. Shevchenko Yu.L., Stojko Yu.M. Clinical phlebology. М.: Press, 2016. ISBN 978-5-91976-090-0. (In Russian)

53. Malinowski A.K., Porrish S. Venous thromboembolism in the obese pregnant patient. Chepter in Book: Pregnancy and Obesity by eds. Maxwell C., Farine D. Berlin, Boston: De Gruyter, 2017. https://doi.org/10.1515/9783110487817

54. Olie V., Canonico M., Scarabin P. Postmenopausal hormone therapy and venous thromboembolism. Thrombosis Research. 2011; 127: 26–29. https://doi.org/10.1016/s0049-3848(11)70008-1

55. Fraser J.D., Anderson D.R. Deep venous thrombosis: recent advances and optimal investigation with US. Radiology. 1999; 211 (1): 9–24. https://doi.org/10.1148/radiology.211.1.r99ap459

56. Mendichovszky I.A., Priest A.N., Bowden D.J., Hunter S., Joubert I., Hilborne S., et al. Combined MR direct thrombus imaging and non-contrast magnetic resonance venography reveal the evolution of deep vein thrombosis: a feasibility study. Eur. Radiol. 2017; 27: 2326–2332. https://doi.org/10.1007/s00330-016-4555-4

57. Guoxi Xie, Hanwei Chen, Xueping He, Jianke Liang, Wei Deng, Zhuonan He, Yufeng Ye. Black-blood thrombus imaging (BTI): a contrast-free cardiovascular magnetic resonance approach for the diagnosis of non-acute deep vein thrombosis. J. Cardiovasc. Magn. Reson. 2017; 19 (1). https://doi.org/10.1186/s12968-016-0320-8

58. Hanwei Chen, Xueping He, Guoxi Xie, Jianke Liang, Yufeng Ye, Wei Deng et al. Cardiovascular magnetic resonance black-blood thrombus imaging for the diagnosis of acute deep vein thrombosis at 1,5 Tesla. J. Cardiovasc. Magn. Reson. 2018; 20 (1). https://doi.org/10.1186/s12968-018-0459-6

59. Spritzer C.E. Progress in MR imaging of the venous system. Perspect. Vasc. Surg. Endovasc. Ther. 2009; 21(2): 105–116. https://doi.org/10.1177/1531003509337259

60. Loud P.A., Katz D.S., Bruce D.A. Deep venous thrombosis with suspected pulmonary embolism: detection with combined CT venography and pulmonary angiography. Radiology. 2001; 219: 498–502. h ttps://doi.org/10.1148/radiology.219.2.r01ma26498

61. Ghaye B., Szapiro D., Willems V. Pitfalls in CT venography of lower limbs and abdominal veins. Am. J. Roentgenol. 2002; 178: 1465–1471. https://doi.org/10.2214/ajr.178.6.1781465

62. Uhl J.F, Verdeille S, Martin-Bouyer Y. Three-dimensional spiral CT venography for the preoperative assessment of varicose patients. Vasa. 2003; 32 (2): 91–94. https://doi.org/10.1024/0301-1526.32.2.91

63. Uhl J.F., Caggiati A. Three-dimensional evaluation of the venous system in varicose limbs by multidetector spiral CT. In: Catalano C. Passariello, eds. Multidetector-Row CT Angiography. Berlin; Heidelberg: Springer, 2005: 199–206. https://doi.org/10.1007/3-540-26984-3_15

64. Gloviczki P. The care of patients with varicose veins and associated chronic venous diseases: Clinical Practice Guidelines of the Society for Vascular Surgery and the American Venous Forum. J. Vasc. Surg. 2011; 53 (5): 2–48. https://doi.org/10.1016/j.jvs.2011.01.079

65. Sannikov A.B., Emel'yanenko V.M., Rachkov M.A., Drozdova I.V. The anatomical structure of the venous collector of the gastrocnemius muscle according to multispiral computed tomography venography. Bulletin of Pirogov National Medical & Surgical Center. 2019; 14 (1): 81–87. https://doi.org/10.25881/BPNMSC.2019.77.81.017 (In Russian)

66. Sannikov A.B., Emel'yanenko V.M., Rachkov M.A. The specific anatomical features of structure of the calf intramuscular veins in the healthy subjects and the patients presenting with chronic venous disease: Data Obtained by multi-spiral computed phlebography. Flebologiya. Journal of Venous Disorders. 2018; 4 (12): 292–299. https://doi.org/10.17116/flebo201812041292 (In Russian)

67. Shajdakov E.V., Sannikov A.B., Emel'yanenko V.M., Rachkov M.A. Variants of ecstatic development of the leg intramuscular veins in patients with chronic venous diseases according to multispiral computed tomography phlebography. Russian Journal of Operative Surgery and Clinical Anatomy. 2019; 3 (3): 22–30. https://doi.org/10.17116/operhirurg2019302122-30 (In Russian)

68. Uhl J.F. A New Tool to Study the 3D Venous Anatomy of the Human Embryo: The Computer-Assisted Anatomical Dissection. J. Vasc Surg: Venous and Limphatic Disorders. 2014; 2 (1): 111–112. https://doi.org/10.1016/j.jvsv.2013.10.025

69. Uhl J.F., Gillot C. Anatomy of the veno-muscular pumps of the lower limb. Phlebology: J. Venous Dis. 2015; 30 (3): 180–193. https://doi.org/10.1177/0268355513517686

70. Uhl J.F., Gillot C. Anatomy of the foot venous pump: physiology and influence on chronic venous disease. Phlebology: J. Venous Dis. 2012; 27 (5): 219–230. https://doi.org/10.1258/phleb.2012.012b01

71. Ignat'ev I.M. Reconstructive surgery of post-thrombotic disease. Kazan': Medicina, 2017. ISBN 978-5-7645-0636-4. (In Russian)


Supplementary files

Review

For citations:


Shajdakov E.V., Sannikov A.B., Emelyanenko V.M., Rachkov M.A., Kryukova L.N., Baranova A.E. MRI and CT-venography in the diagnosis of hemodynamic disturbances in patients with chronic lower extremities venous disorders. Part III. Possibilities of CT-investigation in diagnosing of venous hemodynamics violations. Medical Visualization. 2021;25(4):53-74. (In Russ.) https://doi.org/10.24835/1607-0763-902

Views: 1614


ISSN 1607-0763 (Print)
ISSN 2408-9516 (Online)