Biochemical basics of imaging in positron emission tomography in oncology. Part 2
https://doi.org/10.24835/1607-0763-2020-1-119-132
Abstract
In the current part we discuss in detail the biokinetics of radiopharmaceuticals used to visualize various groups of tumor cells receptors. These include angiogenesis markers - RGD peptides, ligands for somatostatin receptors, agents for sex hormone imaging, ligands for prostate-specific membrane antigen and to activating EGFR mutant kinase. It contains results of studies that were dedicated to search for optimal modifications of these radiopharmaceuticals to increase diagnostic efficiency, their comparative analysis is carried out, the results of their use in cancer research and development prospects in this industry are highlighted.
About the Authors
A. V. LeontyevRussian Federation
Cand. of Sci. (Med.), Head of Nuclear Medicine Department
Phone: +7 (495) 945-87-18 3, 2nd Botkinsky pr., Moscow 125284, Russian Federation
N. A. Rubtsova
Russian Federation
Doct. of Sci. (Med.), Head of Radiology Department
3, 2nd Botkinsky pr., Moscow 125284, Russian Federation
A. I. Khalimon
Russian Federation
radiologist of CT and MRI Department
3, 2nd Botkinsky pr., Moscow 125284, Russian Federation
G. F. Khamadeeva
Russian Federation
Resident of Nuclear Medicine Department
3, 2nd Botkinsky pr., Moscow 125284, Russian Federation
M. T. Kuliev
Russian Federation
Resident of Oncology, Radiotherapy and Plastic Surgery Department of Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University) based at the Nuclear Medicine Department
3, 2nd Botkinsky pr., Moscow 125284, Russian Federation
I. V. Pylova
Russian Federation
Cand. of Sci. (Med.), nuclear medicine physician
3, 2nd Botkinsky pr., Moscow 125284, Russian Federation
T. N. Lazutina
Russian Federation
Cand. of Sci. (Med.), nuclear medicine physician of Nuclear Medicine Department
3, 2nd Botkinsky pr., Moscow 125284, Russian Federation
A. A. Kostin
Russian Federation
Doct. of Sci. (Med.), Professor, First Deputy of General director of “National Medical Research Center of Radiology” of the Ministry of Healthcare of Russia, Head of Urological, oncological and radiological department of Faculty of advanced training of medical workers of medical institute of The Peoples' Friendship University of Russia
3, 2nd Botkinsky pr., Moscow 125284, Russian Federation
A. D. Kaprin
Russian Federation
Full Member of the Russian Academy of Sciences, Corresponding member of Russian Academy of Education, Doct. of Sci. (Med.), Professor, Honored Doctor of the Russian Federation, Chief urologist of the Russian Academy of Sciences, General Director of “National Medical Radiological Research Center” of the Ministry of Healthcare of Russia, Head of Department of urology and surgical nephrology with a course of oncourology at the medical faculty of medical institute of The Peoples' Friendship University of Russia
3, 2nd Botkinsky pr., Moscow 125284, Russian Federation
References
1. Brooks P.C., Strömblad S., Sanders L.C., von Schalscha T.L., Aimes R.T., Stetler-Stevenson W.G., Quigley J.P., Cheresh D.A. Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin αvβ3. Cell. 1996; 85 (5): 683–693. https://doi.org/10.1016/s0092-8674(00)81235-0
2. Haubner R., Wester H.J., Reuning U., SenekowitschSchmidtke R., Diefenbach B., Kessler H., Stöcklin G., Schwaiger M. Radiolabeled αvβ3 Integrin Antagonists: A New Class of Tracers for Tumor Targeting. J. Nucl. Med. 1999; 40: 1061–1071.
3. Chen H., Niu G., Wu H., Chen X. Clinical application of radiolabeled RGD peptides for PET imaging of integrin αvβ3. Theranostics. 2016; 6 (1): 78–92. https://doi.org/10.7150/thno.13242
4. Karen A., Kurdziel M.D., Lindenberg L., Choyke P.L. Oncologic angiogenesis imaging in the clinic – how and why. Imaging Med. 2011; 3 (4): 445–457.
5. Haubner R., Wester H.J., Reuning U., SenekowitschSchmidtke R., Diefenbach B., Kessler H., Stöcklin G., Schwaiger M. Radiolabeled αvβ3 integrin antagonists: A new class of tracers for tumor targeting. J. Nucl. Med. 1999; 40 (6): 1061–1071.
6. Niu G., Chen X. RGD PET: From Lesion Detection to Therapy Response Monitoring. J. Nucl. Med. 2015; 57 (4): 501–502. https://doi.org/10.2967/jnumed.115.168278
7. Zhang H., Liu N., Gao S., Hu X., Zhao W., Tao R., Chen Z., Zheng J., Sun X., Xu L., Li W., Yu J., Yuan S. Can an 18F-AlF-NOTA-PRGD2 PET/CT scan predict the treatment sensitivity of concurrent chemoradiotherapy in patients with newly diagnosed glioblastoma? J. Nucl. Med. 2016; 57: 524–529. https://doi.org/10.2967/jnumed.115.165514
8. Cescato R., Schulz S., Waser B., Eltschinger V., Rivier J.E., Wester H.J., Culler M., Ginj M., Liu Q., Schonbrunn A., Reubi J.C. Internalization of sst2, sst3, and sst5 receptors: effects of somatostatin agonists and antagonists. J. Nucl. Med. 2006; 47 (3): 502–511. https://doi.org/10.1111/bph.12551
9. Sollini M., Erba P.A., Fraternali A. PET and PET/CT with 68Gallium-labeled somatostatin analogues in non GEPNETs tumors. Sci. Wld J. 2014; 2014: Article ID 194123. https://doi.org/10.1155/2014/194123
10. Hofland L.J., Lamberts S.W. The pathophysiological consequences of somatostatin receptor internalization and resistance. Endocr. Rev. 2003; 24: 28–47. https://doi.org/10.1210/er.2000-0001
11. Virgolini I., Ambrosini V., Bomanji J.B., Baum R.P., Fanti S., Gabriel M., Papathanasiou N.D., Pepe G., Oyen W., De Cristoforo C., Chiti A. Procedure guidelines for PET/CT tumour imaging with 68Ga-DOTA-conjugated peptides: 68Ga-DOTA-TOC, 68Ga-DOTA-NOC, 68Ga-DOTA-TATE. Eur. J. Nucl. Med. Mol. Imaging. 2010; 37: 2004–2010. https://doi.org/10.1007/s00259-010-1512-3
12. Geijer H., Breimer L.H. Somatostatin receptor PET/CT in neuroendocrine tumours: update on systematic review and meta-analysis. Eur J. Nucl. Med. Mol. Imaging. 2013; 40 (11): 1770–1780. https://doi.org/10.1007/s00259-013-2482-z
13. Fani M., Nicolas G.P., Wild D. Somatostatin Receptor Antagonists for Imaging and Therapy. J. Nucl. Med. 2017; 58 (Suppl. 2): 61S–66S. https://doi.org/10.2967/jnumed.116.186783
14. Chan D.L.H., Pavlakis N., Schembri G.P., Bernard E.J., Hsiao E., Hayes A., Barnes T., Diakos C., Khasraw M., Samra J., Eslick E., Roach P.J., Clarke S.J., Bailey D.L. Dual somatostatin receptor/FDG PET/CT imaging in metastatic neuroendocrine tumours: proposal for a novel grading scheme with prognostic significance. Theranostics. 2017; 7 (5): 1149–1158. https://doi.org/10.7150/thno.18068
15. Hindié E. The NETPET Score: Combining FDG and Somatostatin Receptor Imaging for Optimal Management of Patients with Metastatic Well-Differentiated Neuroendocrine Tumors. Theranostics. 2017; 7 (5): 1159–1163. https://doi.org/10.7150/thno.19588
16. Fani M., Nicolas G.P., Wild D. Somatostatin receptor antagonists for imaging and therapy. J. Nucl. Med. 2017; 58: 61S–66S. https://doi.org/10.2967/jnumed.116.186783
17. Fani M., Peitl P.K., Velikyan I. Current Status of Radiopharmaceuticals for the Theranostics of Neuroendocrine Neoplasms. Pharmaceuticals. 2017; 10 (1): 30. https://doi.org/10.3390/ph10010030
18. Ginj M., Zhang H., Waser B., Cescato R., Wild D., Wang X., Erchegyi J., Rivier J., Mäcke H.R., Reubi J.C. Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors. Proceedings of the National Academy of Sciences. 2006; 103 (44): 16436–16441. https://doi.org/10.1073/pnas.0607761103
19. Lenzo N., Cardaci J., Meyrick D., Henderson A., Crouch J., Yeo S., Turner H. Lu-177 OPS-201 (satareotide) Trial for Metastatic Neuroendocrine Tumour. Доступно по: http://theranostics.com.au/wp-content/uploads/2016/05/Lu-177-OPS-201-Satareotide-Trial-for-Metastatic-Neuroendocrine-Tumours.pdf. Ссылка активна на 01.07.2019г.
20. Rylova S.N., Stoykow C., Del Pozzo L., Abiraj K., Tamma M.L., Kiefer Y., Fani M., Maecke H.R. The somatostatin receptor 2 antagonist 64Cu-NODAGA-JR11 outperforms 64Cu-DOTA-TATE in a mouse xenograft model. PLoS One. 2018; 13 (4): e0195802. https://doi.org/10.1371/journal.pone.0195802
21. Ginj M., Zhang H., Waser B., Cescato R., Wild D., Wang X., Erchegyi J., Rivier J.R. Mäcke H.R, Reubi J.C. Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors. Proc. Natl. Acad. Sci. USA. 2006; 3 (44): 16436–16441. https://doi.org/10.1073/pnas.0607761103
22. Nicolas G.P., Schreiter N., Kaul F., Uiters J., Bouterfa H., Kaufmann J., Wild D. Sensitivity comparison of 68GaOPS202 and 68Ga-DOTATOC PET/CT in patients with gastroenteropancreatic neuroendocrine tumors: a prospec tive phase II imaging study. J. Nuclear Med. 2017; 59 (6): 915–921. https://doi.org/10.2967/jnumed.117.199760
23. Kunz P.L. Carcinoid and neuroendocrine tumors: building on success. J. Clin. Oncol. 2015; 33: 1855–1863. https://doi.org/10.1200/JCO.2014.60.2532
24. Endocrinology: National guidelines. Brief Edition / Eds I.I.Dedova, G.A. Melnichenko. M.: GEOTAR-Media, 2013. 752 p. (In Russian)
25. Bozkurt M.F., Virgolini I., Balogova S., Beheshti M., Rubello D., Decristoforo C., Ambrosini V., Kjaer A., Delgado-Bolton R., Kunikowska J., Oyen W.J.G., Chiti A., Giammarile F., Sundin A., Fanti S. Guideline for PET/CT imaging of neuroendocrine neoplasms with 68Ga-DOTAconjugated somatostatin receptor targeting peptides and 18F-DOPA. Eur. J. Nucl. Med. Mol. Imaging. 2017; 44 (9): 1588–1601. https://doi.org/10.1007/s00259-017-3728-y
26. Khayum M.A., Doorduin J. Glaudemans A.W.J.M., Dierckx R.A.J.O. , E.F.J., de Vries R.A.J.O. PET and SPECT of Neurobiological Systems. Chapter 14. Berlin; Heidelberg: Springer-Verlag, 2014.
27. Liu C., Gong C., Liu S., Zhang Y., Zhang Y., Xu X., Yuan H., Wang B., Yang Z. 18F-FES PET/CT influences the staging and management of newly diagnosed Oestrogen Receptor positive Breast Cancer Patients: A Retrospective Comparative Study with 18F-FDG PET/CT. J. Nucl. Med. 2019; 60 (1): 596.
28. Sun Y., Yang Z., Zhang Y., Xue J., Wang M., Shi W., Zhu B., Hu S., Yao Z., Pan H., Zhang Y. The preliminary study of 16α-[18F]fluoroestradiol PET/CT in assisting the individualized treatment decisions of breast cancer patients. PLoS ONE. 2015; 10 (1): e0116341. https://doi.org/10.1371/journal.pone.0116341
29. Nienhuis H.H., van Kruchten M., Elias S.G., Glaudemans A.W.J.M., de Vries E.F.J., Bongaerts A.H.H., Schröder C.P., de Vries E.G.E., Hospers G.A.P. 18F-Fluoroestradiol Tumor Uptake Is Heterogeneous and Influenced by Site of Metastasis in Breast Cancer Patients. J. Nucl. Med. 2018; 59 (8): 1212–1218. https://doi.org/10.2967/jnumed.117.198846
30. Gong C., Yang Z., Sun Y., Zhang J., Zheng C., Wang L., Zhang Y., Xue J., Yao Z., Pan H., Wang B., Zhang Y. A preliminary study of 18F-FES PET/CT in predicting metastatic breast cancer in patients receiving docetaxel or fulvestrant with docetaxel. Scientific Reports. 2017; 7: 6584. https://doi.org/10.1038/s41598-017-06903-8
31. Mertan F.V., Lindenberg L., Choyke P.L., Turkbey B. PET imaging of recurrent and metastatic prostate cancer with novel tracers. Future Oncol. 2016; 12 (21): 2463–2477. https://doi.org/10.2217/fon-2016-0270
32. Horoszewicz J.S., Kawinski E., Murphy G.P. Monoclonal antibodies to a new antigenic marker in epithelial prostatic cells and serum of prostatic cancer patients. Anticancer Res. 1987; C (7): 27–935.
33. Afshar-Oromieh A., Babich J.W., Giesel C.K.F.L., Eisenhut M., Kopka K., Haberkorn U. The Rise of PSMA Ligands for Diagnosis and Therapy of Prostate Cancer. J Nucl Med. 2016;57:79S–89S. https://doi.org/10.2967/jnumed.115.170720
34. Giesel F.L., Kesch C., Yun M., Cardinale J., Haberkorn U., Kopka K., Kratochwil C., Hadaschik B.A. 18F-PSMA-1007 PET/CT detects micrometastases in a patient with biochemically recurrent prostate cancer. Clin. Genitourin Cancer. 2017; 15 (3): 497–499. https://doi.org/10.1016/j.clgc.2016.12.029
35. Leontyev A.V., Rubtsova N.A., Khalimon A.I., Kuliev M.T., Pylova I.V., Lazutina T.N., Khamadeeva G.F., Alekseev B.Ya., Kostin A.A., Kaprin A.D. Application of radiolabeled ligands to the prostate-specific membrane antigen for determine localization of biochemical recurrence of prostate cancer by PET/CT (literature review). Medical Visualization. 2018; 22 (3): 81–97. https://doi.org/10.24835/1607-0763-2018-3-81-97 (In Russian)
36. Afshar-Oromieh A., Holland-Letz T., Giesel F.L., Kratochwil C., Mier W., Haufe S., Debus N., Eder M., Eisenhut M., Schäfer M., Neels O., Hohenfellner M., Kopka K., Kauczor H.U., Debus J., Haberkorn U. Diagnostic performance of (68Ga-PSMA-11 (HBED-CC) PET/CT in patients with recurrent prostate cancer: Evaluation in 1007 patients. Eur. J. Nucl. Med. Mol. Imaging. 2017; 44 (8): 1258–1268. https://doi.org/10.1007/s00259-017-3711-7
37. Schwenck J., Rempp H., Reischl G., Kruck S., Stenzl A., Nikolaou K., Pfannenberg C., la Fougère C. Comparison of 68Ga-labelled PSMA-11 and 11C-choline in the detection of prostate cancer metastases by PET/CT. Eur. J. Nucl. Med. Mol. Imaging. 2017; 44 (1): 92–101. https://doi.org/10.1007/s00259-016-3490-6
38. Roach P.J., Francis R., Emmett L., Hsiao E., Kneebone A., Hruby G., Eade T., Nguyen Q.A., Thompson B.D., Cusick T., McCarthy M., Tang C., Ho B., Stricker P.D., Scott A.M. The impact of 68Ga-PSMA PET/CT on management intent in prostate cancer: Results of an Australian prospective multicenter study. J. Nucl. Med. 2018; 59 (1): 82–88. https://doi.org/10.2967/jnumed.117.197160
39. Albisinni S., Artigas C., Aoun F., Biaou I., Grosman J., Gil T., Hawaux E., Limani K., Otte F.X., Peltier A., Sideris S., Sirtaine N., Flamen P., van Velthoven R. Clinical impact of 68Ga-prostate-specific membrane antigen (PSMA) positron emission tomography/computed tomography (PET/CT) in patients with prostate cancer with rising prostate-specific antigen after treatment with curative intent: Preliminary analysis of a multidisciplinary approach. BJU Int. 2017; 120 (2): 197–203. https://doi.org/10.1111/bju.13739
40. Veliev E.I., Tomilov A.A., Bogdanov A.B. Salvage lymph node dissection in patients with oligometastatic recurrence of prostate cancer confirmed by PET-CT. Cancer Urology. 2018; 14 (4): 79–86. https://doi.org/10.17650/1726-9776-2018-14-4-79-86 (In Russian)
41. Kabasakal L., Demirci E., Ocak M. et al. Evaluation of PSMA PET/CT imaging using a 68Ga- HBED-CC ligand in patients with prostate cancer and the value of early pelvic imaging. Nucl. Med. Commun. 2015; C-36 (6): 582–587.
42. Giesel F.L., Knorr K., Spohn F. et al. Detection efficacy of [18F]PSMA-1007 PET/CT in 251 Patients with biochemical recurrence after radical prostatectomy. J. Nucl. Med. 2018; 60 (3): 362–368. https://doi.org/10.2967/jnumed.118.212233
43. Sakaeva D.D., Gordiev M.G. Epidermal growth factor receptor as target of molecular-targeted therapy in patients with primary non-small cell lung cancer. Malignant Tumours.2016; 3: 54–59. https://doi.org/10.18027/2224-5057-2016-3-54-59 (In Russian)
44. Gorbunova V.A., Artamonova E.V., Breder V.V., Laktionov K.K., Moiseenko F.V., Reutova E.V. et al. Practical guidelines for the treatment of non-small cell lung cancer. Malignant tumors: Practical guidelines for RUSSCO; 3s2, 2017 (Volume 7). p. 28–42. (In Russian)
45. Sun X., Xiao Z.,Chen G. et al. A PET imaging approach for determining EGFR mutation status for improved lung cancer patient management. Sci Transl. Med. 2018: 7: 10 (431). https://doi.org/10.1126/scitranslmed.aan8840
Review
For citations:
Leontyev A.V., Rubtsova N.A., Khalimon A.I., Khamadeeva G.F., Kuliev M.T., Pylova I.V., Lazutina T.N., Kostin A.A., Kaprin A.D. Biochemical basics of imaging in positron emission tomography in oncology. Part 2. Medical Visualization. 2020;24(1):119-132. (In Russ.) https://doi.org/10.24835/1607-0763-2020-1-119-132