Biochemical basics of imaging in positron emission tomography in oncology. Part 1
https://doi.org/10.24835/1607-0763-2019-4-114-130
Abstract
This article provides a literature overview of biochemical basics and the clinical application of positron emission tomography, one of the most promising technologies of nuclear imaging in oncology. In the first part we discuss the biokinetics of metabolic radiopharmaceuticals, such as 18F-fluorodeoxyglucose, radiolabeled markers of lipid metabolism 11C- and 18F-choline, 11C-acetate, as well as amino acids analogues – 18F-dihydroxyphenylalanine, 11C-methionine, 18F-fluoroe thyltyrosine, 11C-tryptophan, 18F-flucyclovine. This article includes results of scientific researches, that studied radiopharmaceuticals’ effectiveness in oncological practice. The main indications for use, as well as promising scientific developments in this industry are presented.
About the Authors
A. V. LeontyevRussian Federation
Cand. of Sci. (Med.), Head of Nuclear Medicine Department
3, 2 nd Botkinsky pr., Moscow, 125284
Phone: +7-495-945-87-18
N. A. Rubtsova
Russian Federation
Dr. of Sci. (Med.), Head of Radiology Department
A. I. Khalimon
Russian Federation
radiologist of CT and MRI Department
G. F. Khamadeeva
Russian Federation
Resident of Nuclear Medicine Department
Competing Interests: клинический ординатор отделения радионуклидной диагностики
M. T. Kuliev
Russian Federation
Resident of Oncology, Radiotherapy and Plastic Surgery Department of Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University) based at the Nuclear Medicine Department
I. V. Pylova
Russian Federation
Cand. of Sci. (Med.), nuclear medicine physician of Nuclear Medicine Department
T. N. Lazutina
Russian Federation
Cand. of Sci. (Med.), nuclear medicine physician of Nuclear Medicine Department
A. A. Kostin
Russian Federation
Dr. of Sci. (Med.), Professor, First Deputy of General director
A. D. Kaprin
Russian Federation
Full Member of the Russian Academy of Sciences, Dr. of Sci. (Med.), Professor, Honored Doctor of the Russian Federation; Chief urologist of the Russian Academy of Sciences, General Director
References
1. Phelps M.E. PET: the merging of biology and imaging into molecular imaging. J. Nucl. Med. 2000; 41 (4): 661–681.
2. Anand S.S., Singh H., Dash A.K. Clinical Applications of PET and PET-CT. Med. J. Armed. Forces India. 2009; 65 (4): 353–358.
3. Wadsaka W., Mitterhauser M. Basics and principles of radiopharmaceuticals for PET/CT. Eur. J. Radiology. 2010; 73 (3): 461–469. https://doi.org/10.1016/j.ejrad.2009.12.022
4. Fanti S., Farsad M., Mansi L. PET-CT Beyond FDG. A Quick Guide to Image Interpretation. Berlin; Heidelberg: Springer-Verlag, 2010.
5. Ido T., Wan C.N., Casella V., Fowler J.S., Wolf A.P., Reivich M., Kuhl D.E. Labeled 2-deoxy-d-glucose analogs – F-18- labeled 2-deoxy-2-fluoro-d-glucose, 2-deoxy-2-fluoro-dmannose and C-14- 2-deoxy-2-fluoro-d-glucose. J. Label Compd. Radiopharm. 1978; 14 (2): 175–183. https://doi.org/10.1002/jlcr.2580140204
6. Gallagher B.M., Ansari A., Atkins H., Casella V., Christman D.R., Fowler J.S., Ido T., MacGregor R.R., Som P., Wan C.N., Wolf A.P., Kuhl D.E., Reivich M. F-18-
7. labeled 2-deoxy-2-fluoro-d-glucose as a radiopharmaceutical for measuring regional myocardial glucosemetabolism invivo – tissue distribution and imaging studies in animals. J. Nucl. Med. 1977; 18 (10): 990–996.
8. Boellaard R., Delgado-Bolton R., Oyen W.J.G., Giammarile F., Tatsch K., Eschner W. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur. J. Nucl. Med. Mol. Imaging. 2015; 42: 328–354. https://doi.org/10.1007/s00259-014-2961-x
9. Kulikov V.A., Belyaeva L.E. On bioenergetics of a tumoral cell. Vestnik VGMU. 2015; 14 (6): 5–14. (In Russian)
10. Kim J.W., Dang C.V. Cancer's molecular sweet tooth and the Warburg effect. Cancer Res. 2006; 66 (18): 8927–8930. https://doi.org/10.1158/0008-5472.CAN-06-1501
11. Mueckler M. Facilitative glucose transporters. Eur. J. Biochem. 1994; 219 (3): 713–725.
12. Zhu A., Lee D., Shim H. Metabolic PET Imaging in Cancer Detection and Therapy Response. Semin. Oncol . 2011; 38 (1): 55–69. https://doi.org/10.1053/j.seminoncol.2010.11.012
13. Larson S.M. 18F-FDG Imaging: Molecular or Functional? J. Nucl. Med. 2006; 47: 31N–32N.
14. Jensen M.M., Kjaer A. Monitoring of anti-cancer treatment with 18F-FDG and 18F-FLT PET: a comprehensive review of pre-clinical studies. Am. J. Nucl. Med. Mol. Imaging. 2015; 5 (5): 431–456.
15. Mochizuki T., Tsukamoto E., KugeY., Kanegae K., Zhao S., Hikosaka K., Hosokawa M., Kohanawa M., Tamaki N. FDG Uptake and Glucose Transporter Subtype Expressions in Experimental Tumor and Inflammation Models. J. Nucl. Med. 2001; 42 (10): 1551–1555.
16. Younes M., Brown R.W., Stephenson M., Gondo M., Cagle P.T. Overexpression of Glut 1 and Glut 3 in stage I non-small cell lung carcinoma is associated with poor survival. Cancer. 1997; 80: 1046–1051.
17. Kwee S.A., Hernandez B., Chan O., Wong L. Choline kinase alpha and hexokinase-2 protein expression in hepatocellular carcinoma: association with survival. PLoS One. 2012; 7: 46–59. https://doi.org/10.1371/journal.pone.0046591
18. Palmieri D., Fitzgerald D., Shreeve S.M., Hua E., Bronder J.L., Weil R.J., Davis S., Stark A.M., Merino M.J., Kurek R., Mehdorn H.M., Davis G., Steinberg S.M., Meltzer P.S., Aldape K., Steeg P.S. Analyses of resected human brain metastases of breast cancer reveal the association between up-regulation of hexokinase 2 and poor prognosis. Mol. Cancer Res. 2009; 7: 1438–1445. https://doi.org/10.1158/1541-7786.MCR-09-0234
19. Park S., Lee E., Rhee S., Cho J., Choi S., Lee S., Eo J.S., Pahk K., Choe J.G., Kim S. Correlation between Semi- Quantitative (18)F-FDG PET/CT Parameters and Ki-67 Expression in Small Cell Lung Cancer. Nucl. Med. Mol. Imaging. 2016; 50 (1): 24–30. https://doi.org/10.1007/s13139-015-0363-z
20. Han B., Lin S., Yu L.J., Wang R.Z., Wang Y.Y. Correlation of 18F-FDG PET activity with expressions of survivin, Ki-67, and CD34 in non-small-cell lung cancer. Nucl. Med. Commun. 2009; 30: 831–837. https://doi.org/10.1097/MNM.0b013e32832dcfc4
21. Koo H.R., Park J.S., Kang K.W., Han W., Park I.A., Moon W.K. Correlation between (18)F-FDG uptake on PET/CT and prognostic factors in triple-negative breast cancer. Eur. Radiol. 2015; 25 (11): 3314–3321. https://doi.org/10.1007/s00330-015-3734-z
22. Liang Y., Wu N., Fang Y., Huang W.T., Zhang H., Zheng R., Zhang W.J., Liu Y., Li X.M. Correlation of 18F-FDG uptake with tumor-proliferating antigen Ki-67 expression in aggressive lymphoma. Zhonghua Zhong Liu Za Zhi. 2013; 35 (5): 356–360. https://doi.org/10.3760/cma.j.issn.0253-3766.2013.05.008
23. Deng S.M., Zhang W., Zhang B., Chen Y.Y., Li J.H., Wu Y.W. Correlation between the uptake of 18F-Fluorodeoxyglucose (18F-FDG) and the expression of proliferation- associated antigen Ki-67 in cancer patients: a metaanalysis. PLoS One. 2015; 10 (6). https://doi.org/10.1371/journal.pone.0129028
24. Berezov T.T., Korovkin B.F. Biological chemistry: Textbook. 3rd ed., revised. and add. Textbook. lit. Forstudents, honey. universities. M.: Medicine, 1998. (In Russian)
25. Müller S.A., Holzapfel K., Seidl C., Treiber U., Krause B.J., Senekowitsch-Schmidtke R. Characterization of choline uptake in prostate cancer cells following bicalutamide and docetaxel treatment. Eur. J. Nucl. Med. Mol. Imaging. 2009; 36: 1434–1442. https://doi.org/10.1007/s00259-009-1117-x
26. Kennedy E.P., Weiss S.B. The function of cytidine coenzymes in the biosynthesis of phospholipides. J. Biol. Chem. 1956; 222: 193–214.
27. Nanni C., Zamagni E., Cavo M., Rubello D., Tacchetti P., Pettinato C., Farsad M., Castellucci P., Ambrosini V., Montini G.C., Al-Nahhas A., Franchi R., Fanti S. 11C-choline vs. 18F-FDG PET/CT in assessing bone involvement in patients with multiple myeloma. Wld J. Surg. Oncol. 2007; 5: 68. https://doi.org/10.1186/1477-7819-5-68.
28. Kato T., Shinoda J., Nakayama N., Miwa K., Okumura A., Yano H., Yoshimura S., Maruyama T., Muragaki Y., Iwama T. Metabolic assessment of gliomas using 11C-methionine, [18F] fluorodeoxyglucose, and 11C-choline positronemission tomography. Am. J. Neuroradiol. 2008; 29: 1176–1182. https://doi.org/10.3174/ajnr.A1008
29. Yano H., Shinoda J., Iwama T. Clinical Utility of Positron Emission Tomography in Patients with Malignant Glioma. Neurol. Med. Chir. 2017; 57 (7): 312–320. https://doi.org/10.2176/nmc.ra.2016-0312
30. Kim S.J., Koo P.J., Pak K., Kim I.J., Kim K. Diagnostic accuracy of C-11 choline and C-11 acetate for lymph node staging in patients with bladder cancer: a systematic review and meta-analysis. Wld J. Urol. 2018; 36 (3): 331–340. https://doi.org/10.1007/s00345-017-2168-4
31. Tulin P.E., Dolgushin M.B., Odzharova A.A., Mikhailov A.I., Nevzorov D.I., Medvedeva B.M. PET/CT witH 18F-FDG and 18F-Choline in the Complex Diagnostics of Disseminated Hepatocellular Cancer in the Patient Seven Years Old (Clinical Case). Medical Visualization. 2016; 5: 67–73. https://doi.org/10.21294/1814-4861-2018-17-5-111-118 (In Russian)
32. Vali R., Loidl W., Pirich C., Langesteger W., Beheshti M. Imaging of prostate cancer with PET/CT using 18F-Fluorocholine. Am. J. Nucl. Med. Mol. Imaging. 2015; 5 (2): 96–108.
33. Aslanidis I.P., Pursanova D.M., Mukhortova O.V., Silchenkov A.V., Roshin D.A., Koryakin A.V., Ivanov S.A., Shirokorad V.I. 11C-Choline PET / CT in the detection of prostate cancer relapse in patients with rising PSA. Cancer Urology. 2015; 11 (3): 79–86. https://doi.org/10.17650/1726-9776-2015-11-3-79-86 (In Russian).
34. Von Eyben F.E., Kairemo K. Meta-analysis of 11C-choline and 18F-choline PET/CT for management of patients with prostate cancer. Nuclear Med. Communications. 2014; 35 (3): 221–230. https://doi.org/10.1097/mnm.0000000000000040
35. Beheshti M., Imamovic L., Broinger G., Vali R., Waldenberger P., Stoiber F., Nader M., Gruy B., Janetschek G., Langsteger W. 18F choline PET/CT in the preoperative staging of prostate cancer in patients with intermediate or high risk of extracapsular disease: a prospective study of 130 patients. Radiology. 2010; C-254 (N 3): 925–933.
36. DeGrado T.R., Baldwin S.W., Wang S., Orr M.D., Liao R.P., Friedman H.S., Reiman R., Price D.T., Coleman R.E. Synthesis and evaluation of (18)F-labeled choline analogs as oncologic PET tracers. J. Nucl. Med. 2001; 42 (12): 1805–1814.
37. Waniewski R.A., Martin D.L. Preferential utilization of acetate by astrocytes is attributable to transport. J. Neuroscience. 1998; 18 (14): 5225–5233.
38. Swinnen J.V., Van Veldhoven P.P., Timmermans L., De Schrijver E., Brusselmans K., Vanderhoydonc F., Van de Sande T., Heemers H., Heyns W., Verhoeven G. Fatty acid synthase drives the synthesis of phospholipids partitioning into detergent-resistant membrane microdomains. Biochem. Biophys. Res. Commun. 2003; 302: 898–903.
39. Yoshimoto M., Waki A., Yonekura Y., Sadato N., Murata T., Omata N., Takahashi N., Welch M.J., Fujibayashi Y. Characterization of acetate metabolism in tumor cells in relation to cell proliferation: acetate metabolism in tumor cells. Nucl. Med. Biol. 2001; 28: 117–122.
40. Karanikas G., Beheshti M. 11C-Acetate PET/CT Imaging Physiologic Uptake, Variants, and Pitfalls. PET clinics. 2014; 9 (3): 339–344. https://doi.org/10.1016/j.cpet.2014.03.006
41. Masanao N., Tamaki N. Imaging of Myocardial Oxidative Metabolism in Heart Failure. Current Cardiovasc. Imaging Rep. 2014; 7 (1): 9244. https://doi.org/10.1007/s12410-013-9244-y
42. Soloviev D., Fini A., Chierichetti F., Al-Nahhas A., Rubello D. PET imaging with 11C-acetate in prostate cancer: a biochemical, radiochemical and clinical perspective. Eur. J. Nucl. Med. Mol. Imaging. 2008; 35 (5): 942–949. https://doi.org/10.1007/s00259-007-0662-4
43. Huo L., Dang Y., Lv J., Xing H., Li F. Application of Dual Phase Imaging of 11C-Acetate Positron Emission Tomography on Differential Diagnosis of Small Hepatic Lesions. PLoS One. 2014; 9 (5). https://doi.org/10.1371/journal.pone.0096517
44. Huo L., Wu Z., Zhuang H., Fu Z., Dang Y. Dual time point 11C-acetate PET imaging can potentially distinguish focal nodular hyperplasia from primary hepatocellular carcinoma. Clin. Nucl. Med. 2009; 34: 874–877. https://doi.org/10.1371/journal.pone.0096517
45. Schöder H., Ong S.C., Reuter V.E., Cai S., Burnazi E., Dalbagni G., Larson S.M., Bochner B.H. Initial results with 11C-acetate positron emission tomography/computed tomography (PET/CT) in the staging of urinary bladder cancer. Mol. Imaging Biol. 2012; 14: 245–251. https://doi.org/10.1007/s11307-011-0488-0
46. Liu R.S., Chang C.P., Guo W.Y., Pan D.H., Ho D.M., Chang C.W., Yang B.H., Wu L.C., Yeh S.H. 11C-acetate versus 18F-FDG PET in detection of meningioma and monitoring the effect of gamma-knife radiosurgery. J. Nucl. Med. 2010; 51: 883–891. https://doi.org/10.2967/jnumed.109.070565
47. Mena E., Turkbey B., Mani H., Adler S., Valera V.A., Bernardo M., Shah V., Pohida T., McKinney Y., Kwarteng G., Daar D., Lindenberg M.L., Eclarinal P., Wade R., Linehan W.M., Merino M.J., Pinto P.A., Choyke P.L., Kurdziel K.A. 11C-Acetate PET/CT in Localized Prostate Cancer: A Study with MRI and Histopathologic Correlation. J. Nucl. Med. 2012; 53 (4): 538–545. https://doi.org/10.2967/jnumed.111.096032
48. Langen K.J., Hamacher K., Weckesser M., Floeth F., Stoffels G., Bauer D., Coenen H.H., Pauleit D. O-(2-[18F]. fluoroethyl)-l-tyrosine: uptake mechanisms and clinical applications. Nucl. Med. Biol. 2006; 33: 287–294. https://doi.org/10.1016/j.nucmedbio.2006.01.002
49. Heiss P., Mayer S., Herz M., Wester H.J., Schwaiger M., Senekowitsch-Schmidtke R. Investigation of transport mechanism and uptake kinetics of O-(2-[18F]fluoroethyl)- l-tyrosine in vitro and in vivo. J. Nucl. Med. 1999; 40: 1367–1373. https://doi.org/10.1515/raon-2016-0022
50. Haase C., Bergmann R., Fuechtner F., Hoepping A., Pietzsch J. L-type amino acid transporters LAT1 and LAT4 in cancer: Uptake of 3-O-Methyl-6-18F-Fluoro-L-Dopa in human adenocarcinoma and squamous cell carcinoma in vitro and in vivo. J. Nucl. Med. 2007; 48 (12): 2063–2071. https://doi.org/10.2967/jnumed.107.043620
51. Umeki N., Fukasawa Y., Ohtsuki S., Hori S., Watanabe Y., Kohno Y., Terasaki T. mRNA expression and amino acid transport characteristics of cultured human brain microvascular endothelial cells (hBME). Drug Metab. Pharmacokinet. 2002; 17: 367–373.
52. Uchino H., Kanai Y., Kim D.K., Wempe M.F., Chairoungdua A., Morimoto E., Anders M.W., Endou H. Transport of Amino Acid-Related Compounds Mediated by L-Type Amino Acid Transporter 1 (LAT1): Insights Into the Mechanisms of Substrate Recognition. Molecular Pharmacology. 2002; 61 (4): 729–737.
53. Ryzhkova D.V., Тikhonova D.N., Grineva E.N. Nuclear medicine technology for diagnosisof neuroendocrine tumors. Siberian journal of oncology. 2013; 1 (6): 56–63. (In Russian)
54. Pretze M., Wängler C., Wängler B. 6-[18F]Fluoro-L-DOPA: a well-established neurotracer with expanding application spectrum and strongly improved radiosyntheses. BioMed. Res. Int. Доступно по: www.hindawi.com/journals/bmri/2014/674063/ Ссылка активна на 14.05.2019.
55. Stoessl A.J. Developments in neuroimaging: positron emission tomography. Parkinsonism Relat. Disord. 2014; 20: 180–183. https://doi.org/10.1016/j.neubiorev.2015.09.007
56. Губаева Д.Н., Меликян М.А., Рыжкова Д.В., Никитина И.Л. ПЭТ/КТ с 18F-ДОФА при врожденном гиперинсулинизме. REJR. 2017; 7 (3): 144–152. https://doi. org/10.21569/2222-7415-2017-7-3-144-152 Gubaeva D.N., Melikyan M.A., Ryzhkova D.V., Nikitina I.L. The use of 18FDOPA PET/CT imaging in congenital hyperinsulinism. REJR. 2017; 7 (3): 144–152. https://doi.org/10.21569/2222-7415-2017-7-3-144-152 (In Russian)
57. Bozkurt M.F., Virgolini I., Balogova S., Beheshti M., Rubello D., Decristoforo C., Ambrosini V., Kjaer A., Delgado-Bolton R., Kunikowska J., Oyen W.J.G., Chiti A., Giammarile F., Fanti S. Guideline for PET/CT imaging of neuroendocrine neoplasms with 68Ga-DOTA-conjugated somatostatin receptor targeting peptides and 18F–DOPA. Eur. J. Nucl. Med. Mol. Imaging. 2017; 44 (9): 1588–1601. https://doi.org/10.1007/s00259-017-3728-y
58. Bozkurt M.F., Virgolini I., Balogova S., Beheshti M., Rubello D., Decristoforo C., Ambrosini V., Kjaer A., Delgado-Bolton R., Kunikowska J., Oyen W.J.G., Chiti A., Giammarile F., Sundin A., Fanti S. Guideline for PET/CT imaging of neuroendocrine neoplasms with 68Ga-DOTAconjugated somatostatin receptor targeting peptides and 18F-DOPA. Eur. J. Nucl. Med. Mol. Imaging. 2017; 44 (9): 1588–1601. https://doi.org/10.1007/s00259-017-3728-y
59. Rufini V., Treglia G., Montravers F., Giordano A. Diagnostic accuracy of [18F]DOPA PET and PET/CT in patients with neuroendocrine tumors: a meta-analysis. Clin. Translat. Imaging. 2013; 1 (2): 111–122. https://doi.org/10.1007/s40336-013-0005-3
60. Juhász C., Dwivedi S., Kamson D.O., Michelhaugh S.K., Mittal S. Comparison of amino acid positron emission tomographic radiotracers for molecular imaging of primary and metastatic brain tumors. Mol. Imaging. 2014; 13. https://doi.org/10.2310/7290.2014.00015
61. Ribeiro M.J., De Lonlay P., Delzescaux T., Boddaert N., Jaubert F., Bourgeois S., Dollé F., Nihoul-Fékété C., Syrota A., Brunelle F. Characterization of hyperinsulinism in infancy assessed with PET and 18F-fluoro-L-DOPA. J. Nucl. Med. 2005; 46: 560–566.
62. Timmers H.J., Hadi M., Carrasquillo J.A., Chen C.C., Martiniova L., Whatley M., A. Ling, Eisenhofer G., Adams K.T., Pacak K. The effects of carbidopa on uptake of 6-18-Fluoro-L-DOPA in PET of pheochromocytoma and extraadrenal abdominal paraganglioma. J. Nucl. Med. 2007; 48: 1599–1606. https://doi.org/10.2967/jnumed.107.042721
63. Calabria F.F., Chiaravalloti A., Jaffrain-Rea M.L., Zinzi M., Sannino P., Minniti G., Rubello D., Schillaci O. 18F-DOPA PET/CT Physiological Distribution and Pitfalls: Experience in 215 Patients. Clin. Nucear. Med. 2016; 41 (10): 753–760. https://doi.org/10.1097/RLU.0000000000001318
64. Ito K., Matsuda H., Kubota K. Imaging spectrum and pitfalls of 11C-Methionine positron emission tomography in a series of patients with intracranial lesions. Korean J. Radiol. 2016; 17 (3): 424–434. https://doi.org/10.3348/kjr.2016.17.3.424
65. Nakajima R., Koichiro K.K., Sakai A.S. 11C-methionine PET/CT findings in benign brain disease. Japanese J. Radiol. 2017; 35 (6): 279–288. https://doi.org/10.1007/s11604-017-0638-7
66. Palanichamy K., Chakravarti A. Diagnostic and Prognostic Significance of Methionine Uptake and Methionine Positron Emission Tomography Imaging in Gliomas. Frontiers in Oncol. 2017; 7: 257. https://doi.org/10.3389/fonc.2017.00257
67. Xu W., Gao L., Shao A., Zheng J., Zhang J. The performance of 11C-Methionine PET in the differential diagnosis of glioma recurrence. Oncotarget. 2017; 8 (53), 91030–91039. https://doi.org/10.18632/oncotarget.19024
68. Heiss P., Mayer S., Herz M., Wester H.J., Schwaiger M., Senekowitsch-Schmidtke R. Investigation of transport mechanism and uptake kinetics of O-(2-[18F]fluoroethyl)- l-tyrosine in vitro and in vivo. J. Nucl. Med. 1999; 40: 1367–1373. https://doi.org/10.1515/raon-2016-0022
69. Abdelwahab M.A., Omar W. F18-FET PET/CT in brain tumors. Egyptian J. Nucl. Med. 2016; 13 (13): 1–6. https://doi.org/10.21608/EGYJNM.2016.3308
70. Pauleit D., Floeth F., Herzog H., Hamacher K., Tellmann L., Müller H.W., Coenen H.H., Langen K.J. Whole-body distribution and dosimetry of O-(2-[18F] fluoroethyl)-ltyrosine. Eur. J. Nucl. Med. Mol. Imaging. 2003; 30: 519–524. https://doi.org/10.1007/s00259-003-1118-0
71. Galldiks N., Rapp M., Stoffels G., Dunkl V., Sabel M., Langen K.J. Earlier diagnosis of progressive disease during bevacizumab treatment using O-(2-18F-fluorethyl)- L-tyrosine positron emission tomography in comparison with magnetic resonance imaging. Mol. Imaging. 2013; 12: 273–276.
72. Bolcaen J., Lybaert K., Moerman L., Descamps B., Deblaere K., Boterberg T., Kalala J.P., Van den Broecke C., De Vos F., Vanhove C., Goethals I. Kinetic Modeling and Graphical Analysis of 18F-Fluoromethylcholine (FCho), 18F-Fluoroethyltyrosine (FET) and 18F-Fluorodeoxyglucose (FDG) PET for the Fiscrimination between High-Grade Glioma and Radiation Necrosis in Rats. Plos One. 2016; 11 (10): e0164208. https://doi.org/10.1371/journal.pone.0164208
73. Langen K.J., Hamacher K., Weckesser M., Floeth F., Stoffels G., Bauer D., Coenen H.H., Pauleit D. O-(2-[18F]. fluoroethyl)-l-tyrosine: uptake mechanisms and clinical applications. Nucl. Med. Biol. 2006; 33: 287–294. https://doi.org/10.1016/j.nucmedbio.2006.01.002
74. Muoio B., Giovanella L., Treglia G. Recent Developments of 18F-FET PET in Neuro-oncology. Curr. Med. Chem. 2018; 25 (26): 3061–3073. https://doi.org/10.2174/0929867325666171123202644
75. Albert N.L., Weller M., Suchorska B., Galldiks N., Soffietti R., Kim M.M., la Fougere C., Pope W., Law I., Arbizu J., Chamberlain M.C., Vogelbaum M., Ellingson B.M., Tonn J.C. Response Assessment in Neuro- Oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas. Neuro Oncol. 2016; 18: 1199– 1208. https://doi.org/10.1093/neuonc/now058
76. Chugani D.C., Chugani H.T., Muzik O., Shah J.R., Shah A.K., Canady A., Mangner T.J., Chakraborty P.K. Imaging epileptogenic tubers in children with tuberous sclerosis complex using alpha-[11C]methyl-L-tryptophan positron emission tomography. Ann. Neurol. 1998; 44: 858–866. https://doi.org/10.1212/WNL.0b013e3182a08f3f
77. Nikolaou A., Thomas D., Kampanellou C., Alexandraki K., Andersson L.G., Sundin A., Kaltsas G. The value of 11C-5-hydroxy-tryptophan positron emission tomography in neuroendocrine tumor diagnosis and management: experience from one center. J. Endocrinol. Invest. 2010; 33 (11): 794–799. https://doi.org/10.3275/6936
78. Schuster D.M., Nanni C., Fanti S., Oka S., Okudaira H., Inoue Y., Sörensen J., Owenius R., Choyke P., Turkbey B., Bogsrud T.V., Bach-Gansmo T., Halkar R.K., Nye J.A., Odewole O.A., Savir-Baruch B., Goodman M.M. Anti-1- amino-3-18F-fluorocyclobutane-1-carboxylic acid: physiologic uptake patterns, incidental findings, and variants that may simulate disease. J. Nucl. Med. 2014; 55 (12): 1986–1992. https://doi.org/10.2967/jnumed.114.143628
79. Odewole O.A., Tade F.I., Nieh P.T., Savir-Baruch B., Jani A.B., Master V.A., Rossi P.J., Halkar R.K., Osunkoya A.O., Akin-Akintayo O., Zhang C., Chen Z., Goodman M.M., Schuster D.M. Recurrent prostate cancer detection with anti-3-[(18)F]FACBC PET/CT: comparison with CT. Eur. J. Nucl. Med. Mol. Imaging. 2016; 43 (10): 1773–1783. https://doi.org/10.1007/s00259-016-3383-8
80. Akin-Akintayo O., Tade F., Mittal P., Moreno C., Nieh P.T., Rossi P., Patil D., Halkar R., Fei B., Master V., Jani A.B., Kitajima H., Osunkoya A.O., Ormenisan-Gherasim C., Goodman M.M., Schuster D.M. Prospective evaluation of fluciclovine (18F) PET-CT and MRI in detection of recurrent prostate cancer in non-prostatectomy patients. Eur. J. Radiol. 2018; 102: 1–8. https://doi.org/10.1016/j.ejrad.2018.02.006
81. Akin-Akintayo O.O., Jani A.B., Odewole O., Tade F.I., Nieh P.T., Master V.A., Bellamy L.M., Halkar R.K., Zhang C., Chen Z., Goodman M.M., Schuster D.M. Change in salvage radiotherapy management based on guidance with FACBC (fluciclovine) PET-CT in postprostatectomy recurrent prostate cancer. Clin. Nucl. Med. 2017; 42 (1): e22–e28. https://doi.org/10.1097/RLU.0000000000001379
82. Parent E.E., Benayoun M., Ibeanu I., Olson J.J., Hadjipanayis C.G., Brat D.J., Goodman M.M. [18F] Fluciclovine PET discrimination between high- and lowgrade gliomas. EJNMMI research. 2018; 8 (1): 67. https://doi.org/10.1186/s13550-018-0415-3
Review
For citations:
Leontyev A.V., Rubtsova N.A., Khalimon A.I., Khamadeeva G.F., Kuliev M.T., Pylova I.V., Lazutina T.N., Kostin A.A., Kaprin A.D. Biochemical basics of imaging in positron emission tomography in oncology. Part 1. Medical Visualization. 2019;(4):114-130. (In Russ.) https://doi.org/10.24835/1607-0763-2019-4-114-130