Preview

Medical Visualization

Advanced search

Magnetic resonance imaging in study of lungs

https://doi.org/10.24835/1607-0763-2019-4-10-23

Abstract

For a long time, there was a need to apply magnetic resonance imaging (MRI) technique for lung visualization in clinical practice. The development of this method is stimulated by necessity of the emergence of an alternative to computed tomography, especially when radiation and injection of iodine-containing contrast agents are contraindicated or undesirable, for example, in pregnant women and children, people with intolerance to iodinated contrast. One of the reasons why lung MRI is still rarely used is lack of elaborated standardized protocols that would be adapted to clinical needs of medical society. This publication is a current literature review on the use of MRI in lung studies.

About the Authors

T. A. Akhadov
Clinical and Research Institute of Emergency Pediatric Surgery and Trauma
Russian Federation
Dr. of Sci. (Med.), Professor, Head of radiology department


S. Yu. Guryakov
Clinical and Research Institute of Emergency Pediatric Surgery and Trauma
Russian Federation
radiologist, radiology department


M. V. Ublinsky
Clinical and Research Institute of Emergency Pediatric Surgery and Trauma
Russian Federation

Cand. of Sci. (Biol.), researcher, radiology department

119180 Moscow, Bolshaya Polyanka, 22

Phone: + 7-929-620-21-77



References

1. Котляров П.М., Лагкуева И.Д., Сергеев Н.И., Солодкий В.А. Магнитно-резонансная томография в диагностике заболеваний легких. Пульмонология. 2018; 28 (2): 217–233. https://doi.org/10.18093/0869-0189-2018-28-2-217-233 Kotlyarov P.M., Lagkueva I.D., Sergeev N.I., Solodkiy V.A. Magnetic resonance imaging in diagnostics of lung diseases. Pul'monologiya. 2018; 28 (2): 217–233. (In Russian) https://doi.org/10.18093/0869-0189-2018-28-2-217-233

2. Eibel R., Herzog P., Dietrich O., RieGREr C.T., Ostermann H., Reiser M.F., Schoenberg S.O. Pulmonary abnormalities in immunocompromised patients: comparative detection with parallel acquisition MR imaging and thin-section helical CT. Radiology. 2006; 241: 880–891. https://doi.org/10.1148/radiol.2413042056

3. Ley-Zaporozhan J., Ley S., Eberhardt R., Kauczor H.-U., Heussel C.P. Visualization of morphological parenchymal changes in emphysema: comparison of different MRI sequences to 3D-HRCT. Eur. J. Radiol. 2010; 73: 43–49. https://doi.org/10.1016/j.ejrad.2008.09.029

4. Bauman G., Puderbach M., Deimling M., Jellus V., Chefd’hotel C., Dinkel J., Hintze C., Kauczor H.-U., Schad L.R. Non-contrast-enhanced perfusion and ventilation assessment of the human lung by means of fourier decomposition in proton MRI. Magn. Reson. Med. 2009; 62: 656–664. https://doi.org/10.1002/mrm.22031

5. Biederer J. Magnetic resonance imaging: technical aspects and recent developments. Med. Klin. (Munich). 2005; 100: 62–72. https://doi.org/10.1007/s00063-005-1124-z

6. Biederer J., Bauman G., Hintze C., Fabel M., Both M. Magnet resonanz tomographie. Der Pneumologe. 2011; 8: 234–242. https://doi.org/10.1007/s10405-010-0440-z

7. Biederer J., Beer M., Hirsch W., Wild J., Fabel M., Puderbach M., Van Beek E.J.R. MRI of the lung (2/3). Why… when… how? Insights imaging. 2012; 3 (4) 355–371. https://doi.org/10.1007/s13244-011-0146-8

8. Biederer J. General requirements of MRI of the lung and suggested standard protocol. In: Kauczor H.-U. (ed.). MRI of the lung. Berlin; Heidelberg: Springerю 2009: 3–16. https://doi.org/10.1007/978-3-540-34619-7_1

9. Puderbach M., Hintze C., Ley S., Eichinger M., Kauczor H.-U., Biederer J. MR imaging of the chest: a practical approach at 1.5 T. Eur. J. Radiol. 2007; 64: 345–355. https://doi.org/10.1016/j.ejrad.2007.08.009

10. Hintze C., Biederer J., Kauczor H.-U. Magnetic resonance imaging of the chest. In: Magnevist Monograph. Berlin; Heidelberg; New York: Springer, 2007: 87–103. https://doi.org/10.1007/s13244-011-0146-8

11. Iwasawa T., Takahashi H., Ogura T., Asakura A., Gotoh T., Kagei S., J-ichi N., Obara M., Inoue T. Correlation of lung parenchymal MR signal intensity with pulmonary function tests and quantitative computed tomography (CT) evaluation: a pilot study. J. Magn. Reson. Imaging. 2007; 26:1530–1536. https://doi.org/10.1002/jmri.21183

12. Biederer J., Hintze C., Fabel M. MRI of pulmonary nodules: technique and diagnostic value. Cancer Imaging. 2008; 8: 125–130. https://doi.org/10.1102/1470-7330.2008.0018

13. Bauman G., Lützen U., Ullrich M., Gaass T., Dinkel J., Elke G., Meybohm P., Frerichs I., Hoffmann B., Borggrefe J., Knuth H.C., Schupp J., Prüm H., Eichinger M., Puderbach M., Biederer J., Hintze C. Pulmonary functional imaging: qualitative comparison of Fourier decomposition MR imaging with SPECT/CT in porcine lung. Radiology. 2011; 260: 551–559. https://doi.org/10.1148/radiol.11102313

14. Puderbach M., Eichinger M., Haeselbarth J., Ley S., Kopp-Schneider A., Tuengerthal S., Schmaehl A., Fink C., Plathow C., Wiebel M., Demirakca S., Müller F.M., Kauczor H.U. Assessment of morphological MRI for pulmonary changes in cystic fibrosis (CF) patients: comparison to thin-section CT and chest x-ray. Invest. Radiol. 2007; 42: 715–725. https://doi.org/10.1097/rli.0b013e318074fd81

15. Puderbach M., Eichinger M., Gahr J., Ley S., Tuengerthal S., Schmähl A., Fink C., Plathow C., Wiebel M., Müller F.M., Kauczor H.U. Proton MRI appearance of cystic fibrosis: comparison to CT. Eur. Radiol. 2007; 17: 716–724. https://doi.org/10.1007/s00330-006-0373-4

16. Biederer J., Reuter M., Both M., Muhle C., Grimm J., Graessner J., Heller M.. Analysis of artefacts and detail resolution of lung MRI with breath-hold T1-weighted gradient-echo and T2-weighted fast spin-echo sequences with respiratory triggering. Eur. Radiol. 2002;12:378–384. https://doi.org/10.1007/s00330-001-1147-7

17. Fink C., Puderbach M., Biederer J., Fabel M., Dietrich O., Kauczor H.-U., Reiser M.F., Schönberg S.O. Lung MRI at 1.5 and 3 Tesla: observer preference study and lesion contrast using five different pulse sequences. Invest. Radiol. 2007;42:377–83. https://doi.org/10.1097/01.rli.0000261926.86278.96

18. Kersjes W., Hildebrandt G., Cagil H., Schunk K., Zitzewitz H., Schild H. Differentiation of alveolitis and pulmonary fibrosis in rabbits with magnetic resonance imaging after intrabronchial administration of bleomycin. Invest. Radiol. 1999; 34: 13–21. https://doi.org/10.1097/00004424-199901000-00003

19. Jacob R.E., Amidan B.G., Soelberg J., Minard K.R. In vivo MRI of altered proton signal intensity and T2 relaxation in a bleomycin model of pulmonary inflammation and fibrosis. J. Magn. Reson. Imaging. 2010; 31: 1091–1099. https://doi.org/10.1002/jmri.22166

20. Eibel R., Herzog P., Dietrich O., Rieger C.T., Ostermann H., Reiser M.F., Schoenberg S.O. Pulmonary abnormalities in immunocompromised patients: comparative detection with parallel acquisition MR imaging and thin-section helical CT. Radiology. 2006; 241: 880–891. https://doi.org/10.1148/radiol.2413042056

21. Rieger C., Herzog P., Eibel R., Fiegl M., Ostermann H. Pulmonary MRI–a new approach for the evaluation of febrile neutropenic patients with malignancies. Support Care Cancer. 2008; 16: 599–606. https://doi.org/10.1007/s00520-007-0346-4

22. Fink C., Puderbach M., Biederer J., Fabel M., Dietrich O., Kauczor H-U., Reiser M.F., Schönberg S.O. Lung MRI at 1.5 and 3 Tesla: observer preference study and lesion contrast using five different pulse sequences. Invest. Radiol. 2007; 42: 377–83. https://doi.org/10.1097/01.rli.0000261926.86278.96

23. Biederer J., Schoene A., Freitag S., Reuter M., Heller M. Simulated pulmonary nodules implanted in a dedicated porcine chest phantom: sensitivity of MR imaging for detection. Radiology. 2003; 227: 475–83. https://doi.org/10.1148/radiol.2272020635

24. Bruegel M., Gaa J., Woertler K., Ganter C., Waldt S., Hillerer C., Rummeny E.J. MRI of the lung: value of different turbo spin-echo, single-shot turbo spin-echo, and 3D gradient-echo pulse sequences for the detection of pulmonary metastases. J. Magn. Reson. Imaging. 2007; 25: 73–81. https://doi.org/10.1002/jmri.20824

25. Both M., Schultze J., Reuter M., Bewig B., Hubner R., Bobis I., Noth R., Heller M., Biederer J.. Fast T1- and T2- weighted pulmonary MR-imaging in patients with bronchial carcinoma. Eur. J. Radiol. 2005; 53: 478–88. https://doi.org/10.1016/j.ejrad.2004.05.007

26. Gamsu G., Geer G., Cann C., Müller N., Brito A. A preliminary study of MRI quantification of simulated calcified pulmonary nodules. Invest. Radiol. 1987; 22: 853–858.

27. Regier M., Kandel S., Kaul M.G., Hoffmann B., Ittrich H., Bansmann P.M., Kemper J., Nolte-Ernsting C., Heller M., Adam G., Biederer J. Detection of small pulmonary nodules in high-field MR at 3 T: evaluation of different pulse sequences using porcine lung explants. Eur. Radiol. 2007; 17: 1341–51. https://doi.org/10.1007/s00330-006-0422-z

28. Baumann T., Ludwig U., Pache G., Gall C., Saueressig U., Fisch D., Stankovic Z., Bartholomae J.-P., Honal M. Detection of pulmonary nodules with move-during-scan magnetic resonance imaging using a free-breathing turbo inversion recovery magnitude sequence. Invest. Radiol. 2008; 43: 359–367. https://doi.org/10.1097/RLI.0b013e31816901fa

29. Khalil A.M., Carette M.F., Cadranel J.L., Mayaud C.M., Akoun G.M., Bigot J.M. Magnetic resonance imaging findings in pulmonary Kaposi’s sarcoma: a series of 10 cases. Eur. Respir. J. 1994; 7: 1285–1289. https://doi.org/10.1183/09031936.94.07071285

30. Semelka R.C., Cem Balci N., Wilber K.P., Fisher L.L., Brown M.A., Gomez-Caminero A., Molina P.L. Breath-hold 3D gradient-echo MR imaging of the lung parenchyma: evaluation of reproducibility of image quality in normals and preliminary observations in patients with disease. J. Magn. Reson. Imaging. 2000; 11: 195–200. https://doi.org/10.1002/(sici)1522-2586(200002)11:2<195::aid-jmri18>3.0.co;2-q

31. Matsuoka S., Uchiyama K., Shima H., Terakoshi H., Oishi S., Nojiri Y., Ogata H. Effect of the rate of gadolinium injection on magnetic resonance pulmonary perfusion imaging. J. Magn. Reson. Imaging. 2002; 15: 108–113. https://doi.org/10.1002/jmri.10038

32. Oudkerk M., Beek E.J.R., Wielopolski P., Ooijen P.M.A., Brouwers-Kuyper E.M.J., Bongaerts A.H.H., Berghout A. Comparison of contrast-enhanced magnetic resonance angiography and conventional pulmonary angiography for the diagnosis of pulmonary embolism: a prospective study. Lancet. 2002; 359: –1647. https://doi.org/10.1016/s1062-1458(02)00929-7

33. Peltola V., Ruuskanen O., Svedström E. Magnetic resonance imaging of lung infections in children. Pediatr. Radiol. 2008; 38: 1225–1231. https://doi.org/10.1007/s00247-008-0987-6

34. Ley-Zaporozhan J., Ley S., Sommerburg O., Komm N., Müller F.-M.C., Schenk J.P. Clinical application of MRI in children for the assessment of pulmonary diseases. Rofo. 2009; 181: 419–432. https://doi.org/10.1055/s-0028-1109128

35. Failo R., Wielopolski P.A., Tiddens H.A.W.M., Hop W.C.J., Mucelli R.P., Lequin M.H. Lung morphology assessment using MRI: a robust ultra-short TR/TE 2D steady state free precession sequence used in cystic fibrosis patients. Magn. Reson. Med. 2009;61:299–306. https://doi.org/10.1002/mrm.21841

36. Wagner M., Böwing B., Kuth R., Deimling M., Rascher W., Rupprecht T. Low field thoracic MRI–a fast and radiation free routine imaging modality in children. Magn. Reson. Imaging. 2001; 19: 975–983. https://doi.org/10.1016/s0730-725x(01)00417-9

37. Rupprecht T., Kuth R., Bowing B., Gerling S., Wagner M., Rascher W. Sedation and monitoring of paediatric patients undergoing open low-field MRI. Acta Paediatr. 2000; 89: 1077–1081. https://doi.org/10.1111/j.1651-2227.2000.tb03354.x

38. Serra G., Milito C., Mitrevski M., Granata G., Martini H., Pesce A.M., Sfika I., Bonanni L., Catalano C., Fraioli F., Quinti I. Lung MRI as a possible alternative to CT scan for patients with primary immune deficiencies and increased radio sensitivity. Chest. 2011; 140: 1581–1589. https://doi.org/10.1378/chest.10-3147

39. Hirsch W., Sorge I., Krohmer S., Weber D., Meier K., Till H. MRI of the lungs in children. Eur. J. Radiol. 2008; 68: 278–288. https://doi.org/10.1016/j.ejrad.2008.05.017

40. Schaefer J.F., Kramer U. Whole-body MRI in children and juveniles. Rofo. 2011; 183: 24–36. https://doi.org/10.1055/s-0029-1245883

41. Attenberger U.I., Ingrisch M., Dietrich O., Herrmann K., Nikolaou K., Reiser M.F., Schönberg S.O., Fink C. Timeresolved 3D pulmonary perfusion MRI: comparison of different k-space acquisition strategies at 1.5 and 3 T. Invest. Radiol. 2009; 44: 525–531. https://doi.org/10.1097/rli.0b013e3181b4c252

42. Biederer J., Liess C., Charalambous N., Heller M. Volumetric interpolated contrast-enhanced MRA for the diagnosis of pulmonary embolism in an ex vivo system. J. Magn. Reson. Imaging. 2004; 19: 428–37. https://doi.org/10.1002/jmri.20021

43. Yi C.A., Shin K.M., Lee K.S., Kim B.-T., Kim H., Kwon O.J., Choi J.Y., Chung M.J. Non-small cell lung cancer staging: efficacy comparison of integrated PET/CT versus 3.0-T whole-body MR imaging. Radiology. 2008; 248: 632–642. https://doi.org/10.1148/radiol.2482071822

44. Kluge A., Gerriets T., Müller C., Ekinci O., Neumann T., Dill T., Bachmann G. Thoracic real-time MRI: experience from 2200 examinations in acute and ill-defined thoracic diseases. Rofo. 2005; 177: 1513–1521. https://doi.org/10.1016/j.clinimag.2004.06.012

45. Kluge A., Gerriets T., Stolz E., Dill T., Mueller K.-D., Mueller C., Bachmann G. Pulmonary perfusion in acute pulmonary embolism: agreement of MRI and SPECT for lobar, segmental and subsegmental perfusion defects. Acta Radiol. 2006; 47: 933–940. https://doi.org/10.1080/02841850600885377

46. Kluge A., Müller C., Hansel J., Gerriets T., Bachmann G. Real-time MR with TrueFISP for the detection of acute pulmonary embolism: initial clinical experience. Eur. Radiol. 2004; 14: 709–718. https://doi.org/10.1016/j.clinimag.2004.06.012

47. Meaney J.F., Weg J.G., Chenevert T.L., Stafford- Johnson D., Hamilton B.H., Prince M.R. Diagnosis of pulmonary embolism with magnetic resonance angiography. N. Engl. J. Med. 1997; 336: 1422–1427. https:// doi.org/10.1056/nejm199705153362004 48. Gupta A., Frazer C.K., Ferguson J.M., Kumar A.B., Davis S.J., Fallon M.J., Morris I.T., Drury P.J., Cala L.A. Acute pulmonary embolism: diagnosis with MR angiography. Radiology. 1999; 210: 353–359. https://doi.org/10.1148/radiology.210.2.r99fe53353

48. Goyen M., Laub G., Ladd M.E., Debatin J.F., Barkhausen J., Truemmler K.H., Bosk S., Ruehm SG. Dynamic 3D MR angiography of the pulmonary arteries in under four seconds. J. Magn. Reson. Imaging. 2001; 13: 372–377. https://doi.org/10.1002/jmri.1053

49. Moody A.R. Magnetic resonance direct thrombus imaging. J. Thromb. Haemost. 2003; 1: 1403–1409. https://doi.org/10.1046/j.1538-7836.2003.00333.x

50. Stein P.D., Chenevert T.L., Fowler S.E., Goodman L.R., Gottschalk A., Hales C.A., Hull R.D., Jablonski K.A., Leeper K.V., Naidich D.P., Sak D.J., Sostman H.D., Tapson V.F., Weg J.G., Woodard P.K. Gadoliniumenhanced magnetic resonance angiography for pulmonary embolism: a multicenter prospective study (PIOPED III). Ann. Intern. Med. 2010; 152: 434–443, W142-W143. https://doi.org/10.7326/0003-4819-152-7-201004060-00008

51. Ersoy H., Goldhaber S.Z., Cai T., Luu T., Rosebrook J., Mulkern R., Rybicki F. Time-resolved MR angiography: a primary screening examination of patients with suspected pulmonary embolism and contraindications to administration of iodinated contrast material. Am. J. Roentgenol. 2007;188(5):1246–1254. https://doi.org/10.2214/ajr.06.0901

52. Levin D.L., Chen Q., Zhang M., Edelman R.R., Hatabu H. Evaluation of regional pulmonary perfusion using ultrafast magnetic resonance imaging. Magn. Reson. Med. 2001; 46: 166–171.

53. Burnham K.J., Arai T.J., Dubowitz D.J., Henderson A.C., Holverda S., Buxton R.B., Prisk G.K., Hopkins S.R. Pulmonary perfusion heterogeneity is increased by sustained, heavy exercise in humans. J. Appl. Physiol. 2009; 107: 1559–1568. https://doi.org/10.1152/japplphysiol.00491.2009

54. Eichinger M., Optazaite D.-E., Kopp-Schneider A., Hintze C., Biederer J., Niemann A., Mall M.A., Wielpütz M.O., Kauczor H.-U., Puderbach M. Morphologic and functional scoring of cystic fibrosis lung disease using MRI. Eur. J. Radiol. 2012; 81(6): 1321–1329. https://doi.org/10.1016/j.ejrad.2011.02.045

55. Fabel M., Winterspergrer B.J., Dietrich O., Eichinger M., Fink C., Puderbach M., Kauczor H.-U., Schoenberg S.O., Biederer J. MRI of respiratory dynamics with 2D steadystate free-precession and 2D gradient echo sequences at 1.5 and 3 Tesla: an observer preference study. Eur. Radiol. 2009;19:391–9. https://doi.org/10.1007/s00330-008-1148-x

56. Cai J., Read P.W., Altes T.A., Molloy J.A., Brookeman J.R., Sheng K. Evaluation of the reproducibility of lung motion probability distribution function (PDF) using dynamic MRI. Phys. Med. Biol. 2007; 52: 365–373. https://doi.org/10.1088/0031-9155/52/2/004

57. Adamson J., Chang Z., Wang Z., Yin F.-F., Cai J. Maximum intensity projection (MIP) imaging using slice-stacking MRI. Med. Phys. 2010; 37: 5914–5920. https://doi.org/10.1118/1.3503850

58. Scholz A.-W., Wolf U., Fabel M., Weiler N., Heussel C.P., Eberle B., David M., Schreiber W.G. Comparison of magnetic resonance imaging of inhaled SF6 with respiratory gas analysis. Magn. Reson. Imaging. 2009; 27: 549–556. https://doi.org/10.1016/j.mri.2008.08.010

59. Molinari F., Puderbach M., Eichinger M., Ley S., Fink C., Bonomo L., Kauczor H.-U., Bock M. Oxygen-enhanced magnetic resonance imaging: influence of different gas delivery methods on the T1-changes of the lungs. Invest Radiol. 2008;43:427–432. https://doi.org/10.1097/rli.0b013e318169012d

60. Leawoods J.C., Yablonskiy D.A., Saam B., Gierada D.S., Conradi M.S. Hyperpolarized 3He gas production and MR imaging of the lung. Concepts Magn. Reson. 2001; 13: 277–293. https://doi.org/10.1002/cmr.1014

61. Moller H.E., Chen X.J., Saam B., Johnson G.A., Altes T.A., de Lange E.E., Kauczor H.U. MRI of the lungs using hyperpolarized noble gases. Magn. Reson. Med. 2002; 47:1029–1051. https://doi.org/10.1002/mrm.10173

62. Salerno M., de Lange E.E., Altes T.A., Truwit J.D., Brookeman J.R., Mugler J.P. 3rd. Emphysema: hyperpolarized helium 3 diffusion MR imaging of the lungs compared with spirometric indexes—initial experience. Radiology. 2002; 222: 252–260. https://doi.org/10.1148/radiol.2221001834

63. Mills G.H., Wild J.M., Eberle B., Van Beek E.J.R. Functional magnetic resonance imaging of the lung. Brit. J. Anaesth. 2003; 91: 16–30. https://doi.org/10.1093/bja/aeg149

64. Deninger A.J., Eberle B., Ebert M., Grossmann T., Hanisch G., Heil W., Kauczor H.U., Markstaller K., Otten E., Schreiber W., Surkau R., Weiler N. He-3-MRI-based measurements of intrapulmonary p(O2) and its time course during apnea in healthy volunteers: first results, reproducibility, and technical limitations. NMR Biomed. 2000; 13: 194–201. https://doi.org/10.1002/1099-1492(200006)13:4<194::aid-nbm643>3.0.co;2-d

65. Chen W., Jian W., H-tao L., Li C., Y-ke Z., Xie B., D-quan Z., Y-ming D., Lin Y. Whole-body diffusion-weighted imaging vs. FDG-PET for the detection of non-small-cell lung cancer. How do they measure up? Magn. Reson. Imaging. 2010; 28: 613–620. https://doi.org/10.1016/j.mri.2010.02.009

66. Stein P.D., Gottschalk A., Sostman H.D., Chenevert T.L., Fowler S.E., Goodman L.R., Hales C.A., Hull R.D., Kanal E., Leeper K.V. Jr., Nadich D.P., Sak D.J., Tapson V.F., Wakefield T.W., Weg J.G., Woodard P.K. Methods of prospec tive investigation of pulmonary embolism diagnosis III (PIOPED III). Semin. Nucl. Med. 2008; 38: 462–470. https://doi.org/10.1053/j.semnuclmed.2008.06.003


Review

For citations:


Akhadov T.A., Guryakov S.Yu., Ublinsky M.V. Magnetic resonance imaging in study of lungs. Medical Visualization. 2019;(4):10-23. (In Russ.) https://doi.org/10.24835/1607-0763-2019-4-10-23

Views: 1104


ISSN 1607-0763 (Print)
ISSN 2408-9516 (Online)