Preview

Medical Visualization

Advanced search

Comparative analysis of patients with cardiac resynchronization therapy depending on septal flash presence

https://doi.org/10.24835/1607-0763-2019-3-44-53

Abstract

Aim. To assess clinical and morpho-functional features of the heart in patients with congestive heart failure (CHF) after cardiac resynchronization therapy (CRT) depending on septal flash (SF).
Materials and methods. The study enrolled 60 patients (92.0% men, 8.0% women; mean age 54.5 ± 10.4 years; 70.0% had left bundle branch block (LBBB) with II-IV NYHA functional class CHF. SF (mechanical anomaly of interventricular septum (IVS) movement) is determined according to speckle tracking echocardiography (STE) and tissue Doppler imaging (TDI). Patients were divided into two groups: with SF (I group, n = 10) and without SF (II group, n = 50).
Results. At baseline the groups did not differ in main clinical characteristics including QRS width and LBBB. Mechanical interventricular delay was higher in group I (65.5 ms [53.5; 95.5] vs 31.0 ms [15.0; 64.5]; р = 0.026). Basal segment of IVS longitudinal strain (LS) delay by STE (257.5 ms [156.3; 293.8] vs 323.5 ms [262.5; 377.8]; р = 0.024) and LS delay by TDI (204.0 ms [170.8; 260.3] vs 434.0 ms [370.0; 489.0]; р < 0.001) were significantly lower in group with SF. According to logistic regression a combination of LS apical segment of IVS by STE (HR 0.607; 95% Cl 0.369–0.989; р = 0.048) and LS delay basal segment of IVS by TDI (HR 0.969; 95% Cl 0.0945–0.993; р = 0.011) had a relationship with SF. According to ROC analysis sensitivity and specificity of this model in SF definition in patients with CRT were 87.5% and 86.5% (AUC = 0.939; p < 0.01). Mean changes in LV ESV (52.0 ml [32.5; 72.8] vs 19,0 ml [1.3; 40.0]; р = 0.002) and LV ejection fraction (EF) (13.0% [5.5; 18.8] vs 4.0% [2.0; 9.0]; р = 0.002) were significantly higher in patients with SF. All patients in group I had a superresponse to CRT (ESV LV decrease ≥30%); 42.0% patients in group II were superresponders (р < 0.001).
Conclusion. SF could be determined by STE and TDI. SF is associated with severe mechanical interventricular dyssynchrony and superresponse to CRT. Patients with SF have significantly better LV EF dynamics after CRT. 

About the Authors

N. E. Shirokov
Tyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

junior researcher of Instrumental Diagnostics Laboratory, Scientific Department of Instrumental Research Methods

Russia, Tyumen, 625026, Melnikaite 111

Phone: +7-982-945-38-54



V. A. Kuznetsov
Tyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

doct. of med. sci., Professor, Honored Scientist of the Russian Federation, scientific consultant

Russia, Tyumen, 625026, Melnikaite 111



A. M. Soldatova
Tyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

cand. of med. sci., researcher of instrumental diagnostics laboratory, scientific department of instrumental research methods

Russia, Tyumen, 625026, Melnikaite 111



D. V. Krinochkin
Tyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

cand. of med. sci., Head of ultrasound diagnostics department, Senior researcher of instrumental diagnostics laboratory, scientific department of instrumental research methods

Russia, Tyumen, 625026, Melnikaite 111

 



L. M. Malishevskii
Tyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

laboratory assistant of instrumental diagnostics laboratory, scientific department of instrumental research methods

Russia, Tyumen, 625026, Melnikaite 111



References

1. Atherton J.J., Bauersachs J. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure – Web Addenda. 2016. http://dx.doi.org/10.1093/eurheartj/ehw128.

2. Sipahi I., Chou J.C., Hyden M., Rowland D.Y., Simon D.I., Fang J.C. Effect of QRS morphology on clinical event reduction with cardiac resynchronization therapy: metaanalysis of randomized controlled trials. Am. Heart J. 2012; 163 (2): 260–267. e3. http://dx.doi.org/10.1016/j.ahj. 2011.11.014.

3. Cleland J.G., Abraham W.T., Linde C., Gold M.R., Young J.B., Daubert J.C., Sherfesee L., Wells G.A., Tang A.S.L. An individual patient meta-analysis of five randomized trials assessing the effects of cardiac resynchronization therapy on morbidity and mortality in patients with symptomatic heart failure. Eur. Heart J. 2013; 34 (46): 3547–3556. http://dx.doi.org/10.1093/eurheartj/eht290.

4. Gjesdal O., Remme E.W., Opdahl A., Skulstad H., Russell K., Kongsgaard E., Edvardsen T., Smiseth O.A. Mechanisms of abnormal systolic motion of the interventricular septum during left bundle-branch block. Circ. Cardiovasc. Imaging. 2011; 4: 264–273. http://dx.doi.org/10.1161/circimaging.110.961417.

5. Little W.C., Reeves R.C., Arciniegas J., Katholi R.E., Rogers E.W. Mechanism of abnormal interventricular septal motion during delayed left ventricular activation. Circ. Res. 1982; 65: 1486–1490. http://dx.doi.org/10.1161/01.cir.65.7.1486.

6. Poulidakis E., Aggeli C., Sideris S., Sfendouraki E., Koutagiar I., Katsaros A., Giannoulis E., Koukos M., Margioula E., Lagoudakou S., Gatzoulis K., Dilaveris P., Kallikazaros I., Couloheri S., Stefanadis C., Tousoulis D. Echocardiography for prediction of 6-month and late response to cardiac resynchronization therapy: implementation of stress echocardiography and compa rative assessment along with widely used dyssynchrony indices. Int. J. Cardiovasc. Imaging. 2019; 1–10. http://dx.doi.org/10.1007/s10554-018-01520-6.

7. Maruo T., Seo Y., Yamada S., Arita T., Ishizu T., Shiga T., Dohi K., Toide H., Furugen A., Inoue K., Daimon M., Kawai H., Tsuruta H., Nishigami K., Yuda S., Ozawa T., Izumi C., Fumikura Y., Wada Y., Doi M., Okada M., Takenaka K., Aonuma K. The Speckle Tracking Imaging for the Assessment of Cardiac Resynchronization Therapy (START) study. Circ. J. 2015; 79 (3): 613–622. http://dx.doi.org/10.1253/circj.CJ-14-0842.

8. Risum N., Tayal B., Hansen T.F., Bruun N.E., Jensen M.T., Lauridsen T.K., Saba S., Kisslo J., Gorcsan J. 3rd, Sogaard P. Identification of typical left bundle branch block contraction by strain echocardiography is additive to electrocardiography in prediction of long-term outcome after cardiac resynchronization therapy. J. Am. Coll. Cardiol. 2015; 66: 631–641. http://dx.doi.org/10.1016/j.jacc.2015.06.020.

9. Maréchaux S., Guiot A., Castel A.L., Guyomar Y., Semichon M., Delelis F., Heuls S., Ennezat P.V., Graux P., Tribouilloy C. Relationship between two-dimensional speckle-tracking septal strain and response to cardiac resynchronization therapy in patients with left ventricular dysfunction and left bundle branch block: a prospective pilot study. J. Am. Soc. Echocardiogr. 2014; 27: 501–511. http://dx.doi.org/10.1016/j.echo.2014.01.004.

10. Vereckei A., Szelényi Z., Kutyifa V., Zima E., Szénási G., Kiss M., Katona G., Karádi I., Merkely B. Novel electrocardiographic dyssynchrony criteria improve patient selection for cardiac resynchronization therapy. Europace: European pacing, arrhythmias, and cardiac electrophysiology: journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the Eur. Soc. Cardiol. 2016. http://dx.doi.org/10.1093/europace/euw326.

11. Risum N. Assessment of mechanical dyssynchrony in cardiac resynchronization therapy. Dan. Med. J. 2014; 61 (12): B4981.

12. Kuznetsov V.A., Kolunin G.V., Harac V.E. et al. Register of Cardiac Resynchronization Therapy. [Svidetel'stvo o gosudarstvennoj registracii bazy dannyh № 2010620077 ot 1 fevralya 2010 goda.] (In Russian)

13. Shiller N., Osipov M.A. Clinical Echocardiography. M.: MEDpress-inform, 2018. 344 p. (In Russian)

14. Kuznetsov V.A. Cardiac resynchronization therapy: selected questions. M.: Abis, 2007. 128 p. (In Russian)

15. Mareev V.YU., Fomin I.V., Ageev F.T. et al. Clinical recommendations SSHF-RSC-RSMST. Heart failure: congestive (CHF) and acute decompensated (ADHF). Diagnosis, prevention and treatment. Kardiologiya. 2018; 58 (6S): 8–158. http://dx.doi.org/10.18087/cardio.2475. (In Russian)

16. Auricchio A., Fantoni C., Regoli F., Carbucicchio C., Goette A., Geller C., Kloss M., Klein H. Characterization of left ventricular activation in patients with heart failure and left bundle branch block. Circulation. 2004; 109: 1133–1139. http://dx.doi.org/10.1161/01.CIR.0000118502.91105.F6.

17. Byrne M.J., Helm R.H., Daya S., Osman N.F., Halperin H.R., Berger R.D., Kass D.A., Lardo A.C. Diminished left ventricular dyssynchrony and impact of resynchronization in failing hearts with right versus left bundle branch block. J. Am. Coll. Cardiol. 2007; 50: 1484–1490. http://dx.doi.org/10.1016/j.jacc.2007.07.011.

18. Little W.C., Reeves R.C., Arciniegas J., Katholi R.E., Rogers E.W. Mechanism of abnormal interventricular septal motion during delayed left ventricular activation. Circ. Res. 1982; 65: 1486–1490.

19. Voigt J.U., Pedrizzetti G., Lysyansky P., Marwick T.H., Houle H., Baumann R., Pedri S., Ito Y., Abe Y., Metz S., Song J.H., Hamilton J., Sengupta P.P., Kolias T.J., d'Hooge J., Aurigemma G.P., Thomas J.D., Badano L.P. Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. Eur. Heart J. Cardiovasc. Imaging. 2015; 16 (1): 1–11. https://doi.org/10.1093/ehjci/jeu184.

20. Walmsley J., Huntjens P.R., Prinzen F.W., Delhaas T., Lumens J. Septal flash and septal rebound stretch have different underlying mechanisms. Am. J. Physiol. Heart. Circ. Physiol. 2016; 310: H394–H403. http://dx.doi.org/10.1152/ajpheart.00639.2015.

21. Kanzaki H., Bazaz R., Schwartzman D., Dohi K., Sade L.E., Gorcsan J. 3rd. A mechanism for immediate reduction in mitral regurgitation after cardiac resynchronization therapy: insights from mechanical activation strain mapping. J. Am. Coll. Cardiol. 2004; 44 (8): 1619–1625. http://dx.doi.org/10.1016/j.jacc.2004.07.036.

22. Leitman M., Lysyansky P., Sidenko S., Shir V., Peleg E., Binenbaum M., Kaluski E., Krakover R., Vered Z. Twodimensional strain-a novel software for real-time quantitative echocardiographic assessment of myocardial function. J. Am. Soc. Echocardiogr. 2004; 17: 1021–1029. http://dx.doi.org/10.1016/j.echo.2004.06.019.

23. Gorcsan J. 3rd, Tanabe M., Bleeker G.B., Suffoletto M.S., Thomas N.C., Saba S., Tops L.F., Schalij M.J., Bax J.J. Combined longitudinal and radial dyssynchrony predicts ventricular response after resynchronization therapy. J. Am. Coll. Cardiol. 2007; 50: 1476–1483. http://dx.doi.org/10.1016/j.jacc.2007.06.043.

24. Doltra A., Bijnens B., Tolosana J.M., Borr s R., Khatib M., Penela D., De Caralt T.M., Castel M. ., Berruezo A., Brugada J., Mont L., Sitges M. Mechanical abnormalities detected with conventional echocardiography are associated with response and midterm survival in CRT. JACC: Cardiovascular Imaging. 2014; 7 (10): 969–979. http://dx.doi.org/10.1016/j.jcmg.2014.03.022.


Review

For citations:


Shirokov N.E., Kuznetsov V.A., Soldatova A.M., Krinochkin D.V., Malishevskii L.M. Comparative analysis of patients with cardiac resynchronization therapy depending on septal flash presence. Medical Visualization. 2019;(3):44-53. (In Russ.) https://doi.org/10.24835/1607-0763-2019-3-44-53

Views: 869


ISSN 1607-0763 (Print)
ISSN 2408-9516 (Online)