Preview

Medical Visualization

Advanced search

Proton 3D MR spectroscopy in the diagnosis of glial brain tumors

https://doi.org/10.24835/1607-0763-2019-3-8-18

Abstract

The purpose of this study was an assessment of the proton 3D MR spectroscopy efficacy in diagnosis of primary glial brain tumors.
Material and methods. Sixty three patients aged from 20 to 60 years with primary glial brain tumors of varying degrees of malignancy were examined. The ratios of main metabolites indices were evaluated with following comparison with the metabolites obtained in gray and white matter of the opposite hemisphere.
The ratios of main metabolites: Cho/Cr, NAA/Cr, Cho/NAA showed significant (p <0.005) differences in the groups of patients with low and high grade gliomas.
Results. The obtained data proved the efficacy of the proton 3D MR-spectroscopy in predicting of the glial brain tumors malignancy.

About the Authors

A. N. Tyurina
Federal State Autonomous Institution “N.N. Burdenko National Medical Research Center of Neurosurgery” of the Ministry of Health of the Russian Federation
Russian Federation

Junior Researcher

4-ya Tverskaya-Yamskaya str., 16, Moscow, Russia 125047

Phone: +7-916-634-25-22



I. N. Pronin
Federal State Autonomous Institution “N.N. Burdenko National Medical Research Center of Neurosurgery” of the Ministry of Health of the Russian Federation
Russian Federation

Academician of the Russian Academy of Sciences, doct. of med. sci., Professor

4-ya Tverskaya-Yamskaya str., 16, Moscow, Russia 125047



L. M. Fadeeva
Federal State Autonomous Institution “N.N. Burdenko National Medical Research Center of Neurosurgery” of the Ministry of Health of the Russian Federation
Russian Federation

Medical Physicist

4-ya Tverskaya-Yamskaya str., 16, Moscow, Russia 125047



A. I. Batalov
Federal State Autonomous Institution “N.N. Burdenko National Medical Research Center of Neurosurgery” of the Ministry of Health of the Russian Federation
Russian Federation

Junior Researcher

4-ya Tverskaya-Yamskaya str., 16, Moscow, Russia 125047



N. E. Zakharova
Federal State Autonomous Institution “N.N. Burdenko National Medical Research Center of Neurosurgery” of the Ministry of Health of the Russian Federation
Russian Federation

doct. of med. sci., Professor of Russian Academy of Sciences

4-ya Tverskaya-Yamskaya str., 16, Moscow, Russia 125047



A. E. Podoprigora
Federal State Autonomous Institution “N.N. Burdenko National Medical Research Center of Neurosurgery” of the Ministry of Health of the Russian Federation
Russian Federation

cand. of med. sci.

4-ya Tverskaya-Yamskaya str., 16, Moscow, Russia 125047



E. I. Shults
Federal State Autonomous Institution “N.N. Burdenko National Medical Research Center of Neurosurgery” of the Ministry of Health of the Russian Federation
Russian Federation

cand. of med. sci

4-ya Tverskaya-Yamskaya str., 16, Moscow, Russia 125047



V. N. Kornienko
Federal State Autonomous Institution “N.N. Burdenko National Medical Research Center of Neurosurgery” of the Ministry of Health of the Russian Federation
Russian Federation

Academician of the Russian Academy of Sciences, doct. of med. sci., Professor

4-ya Tverskaya-Yamskaya str., 16, Moscow, Russia 125047



References

1. Kornienko V.N., Pronin I.N. Diagnostic neuroradiology. Vol. 1. Moscow: IP “T.M. Andreeva”, 2008. 54 p. (In Russian)

2. Möller-Hartmann W., Herminghaus S., Krings T., Marquardt G., Lanfermann H., Pilatus U., Zanella F.E. Clinical application of proton magnetic resonance spectroscopy in the diagnosis of intracranial mass lesions. Neuroradiology. 2002; 44 (5): 371–381. https://doi.org/10.1007/s00234-001-0760-0.

3. Law M., Yang S., Wang H., Babb J.S., Johnson G., Cha S., Knopp E.A., Zagzag D. Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. Am. J. Neuroradiol. 2003; 24 (10): 1989–1998.

4. Kornienko V.N., Pronin I.N. Diagnostic Neuroradiology. Vol. 2. Moscow: IE “T.M. Andreeva”, 2009: 13–74. (In Russian)

5. Magnetic resonance spectroscopy; Eds Trufanova G.E., Tyutina L.A. SPb.: “ELBI-SPb”, 2008: 11–17. (In Russian)

6. Tran T., Ross B., Lin A. Magnetic Resonance Spectroscopy in Neurological Diagnosis. Neurol. Clin. 2009; 27 (1): 21–60. https://doi.org/10.1016/j.ncl.2008.09.007.

7. Podoprigora A.E., Pronin I.N., Fadeeva L.M. Proton magnetic resonance spectroscopy in the diagnosis of tumor and non-tumor lesions of the brain. Burdenko's Journal of Neurosurgery = Zhurnal “Voprosy neirokhirurgii” imeni N.N. Burdenko. 2000; 3: 17–21. (In Russian)

8. Nelson S.J., Li Y., Lupo J.M., Olson M., Crane J.C., Molinaro A., Roy R., Clarke J., Butowski N., Prados M., Cha S., Chang S.M. Serial analysis of 3D H-1 MRSI for patients with newly diagnosed GBM treated with combination therapy that includes bevacizumab. J. Neurooncol. 2016; 130: 171–179. https://doi.org/10.1007/s11060-016-2229-3.

9. Ebel A., Maudsley A.A. Improved spectral quality for 3D MR spectroscopic imaging using a high spatial resolution acquisition strategy. Magn. Reson. Imaging. 2003; 21: 113–120.

10. Mekle R., Mlynarik V., Gambarota G., Hergt M., Krueger G., Gruetter R. MR spectroscopy of the human brain with enhanced signal intensity at ultrashort echo times on a clinical platform at 3T and 7T. Magn. Reson. Med. 2009; 61: 1279–1285.

11. Louis D., Perry A., Reifenberger G., von Deimling A., Figarella-Branger D., Cavenee W., Ohgaki H., Wiestler O., Kleihues P., Ellison D. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 2016; 131 (6): 803–820. https://doi.org/10.1007/s00401-016-1545-1.

12. Tyurina A.N., Pronin I.N., Zakharova N.E., Kornienko V.N. Proton 3D MR spectroscopy of the gray and white matter of the brain. A study of 15 volunteers. Burdenko's Journal of Neurosurgery = Zhurnal “Voprosy neirokhirurgii” imeni N.N. Burdenko. 2018; 4: 4. (In Russian)

13. Yerli H., Ağildere A.M., Ozen O., Geyik E., Atalay B., Elhan A.H. Evaluation of cerebral glioma grade by using normal side creatine as an internal reference in multi-voxel 1H-MR spectroscopy. Diagn. Interv. Radiol. Diagn Interv Radiol. 2007; 13 (1): 3–9.

14. Stadlbauer A., Gruber S., Nimsky C., Fahlbusch R., Hammen T., Buslei R., Tomandl B., Moser E., Ganslandt O. Preoperative grading of gliomas by using metabolite quantification with high-spatial-resolution proton MR spectroscopic imaging. Radiology. 2006; 238: 958–969. https://doi.org/10.1148/radiol.2382041896.

15. Al-Okaili R.N., Krejza J., Woo J.H., Wolf R.L., O'Rourke D.M., Judy K.D., Poptani H., Melhem E.R. Intraaxial brain masses: MR imaging-based diagnostic strategy – initial experience. Radiology. 2007; 243: 539–550. https://doi.org/10.1148/radiol.2432060493.

16. Bulakbasi N., Kocaoglu M., Ors F., Tayfun C., Uçöz T. Combination of single-voxel proton MR spectroscopy and apparent diffusion coefficient calculation in the evaluation of common brain tumors. Am. J. Neuroradiol. 2003; 24: 225–233.

17. Kim J.H., Chang K.H., Na D.G., Song I.C., Kwon B.J., Han M.H., Kim K. 3T 1H-MR spectroscopy in grading of cerebral gliomas: comparison of short and intermediate echo time sequences. Am. J. Neuroradiol. 2006; 27: 1412–1418.

18. Knopp E.A., Cha S., Johnson G., Mazumdar A., Golfinos J.G., Zagzag D., Miller D.C., Kelly P.J., Kricheff I.I. Glial neoplasms: dynamic contrast-enhanced T2*- weighted MR imaging. Radiology. 1999; 211: 791–798. https://doi.org/10.1148/radiology.211.3.r99jn46791.

19. Pirzkall A., Li X., Oh J., Chang S., Berger M.S., Larson D.A., Verhey L.J., Dillon W.P., Nelson S.J. 3D MRSI for resected high-grade gliomas before RT: tumor extent according to metabolic activity in relation to MRI. Int. J. Radiat. Oncol. Biol. Phys. 2004; 59: 126–37. https://doi.org/10.1016/j.ijrobp.2003.08.023.

20. Soares D.P., Law M. Magnetic resonance spectroscopy of the brain: review of metabolites and clinical applications. Clin. Radiol. 2009; 64: 12–21. https://doi.org/10.1016/j.crad.2008.07.002.

21. Li B.S., Regal J., Gonen O. SNR versus resolution in 3D 1H MRS of the human brain at high magnetic fields. Magn. Reson. Med. 2001; 46: 1049–1053.

22. Zonari P., Baraldi P., Crisi G. Multimodal MRI in the characterization of glial neoplasms: the combined role of single-voxel MR spectroscopy, diffusion imaging and echoplanar perfusion imaging. Neuroradiology. 2007; 49: 795–803. https://doi.org/10.1007/s00234-007-0253-x.

23. Toyooka M., Kimura H., Uematsu H., Kawamura Y., Takeuchi H., Itoh H. Tissue characterization of glioma by proton magnetic resonance spectroscopy and perfusion-weighted magnetic resonance imaging: glioma grading and histological correlation. Clin. Imaging. 2008; 32: 251–258. https://doi.org/10.1016/j.clinimag.2007.12.006.


Review

For citations:


Tyurina A.N., Pronin I.N., Fadeeva L.M., Batalov A.I., Zakharova N.E., Podoprigora A.E., Shults E.I., Kornienko V.N. Proton 3D MR spectroscopy in the diagnosis of glial brain tumors. Medical Visualization. 2019;(3):8-18. (In Russ.) https://doi.org/10.24835/1607-0763-2019-3-8-18

Views: 1256


ISSN 1607-0763 (Print)
ISSN 2408-9516 (Online)