Resting state fMRI in pre-surgical brain mapping. Literature review
https://doi.org/10.24835/1607-0763-2018-5-6-13
Abstract
Today, functional magnetic resonance imaging (fMRI) allows to plan surgery based on the topography of functionally important areas of the human brain cortex and tumor. This method can complement the surgical strategy with significant clinical information. The stimulus-dependent fMRI with motor and language paradigms is generally used for preoperative planning. The study outcome depends on the patient's ability to perform tasks paradigm, which is broken in brain tumors. In an attempt to overcome this problem, resting-state fMRI (rs-fMRI) is used for brain mapping. Rs-fMRI is based on the measurement of spontaneous fluctuations of the BOLD signal (blood oxygen level-dependent), representing the functional structure of the brain. In contrast to stimulus-dependent fMRI, rs-fMRI provides more complete information about functional architecture of the brain. rs-fMRI is used in conditions where the results of stimulusdependent fMRI may be falsely positive or in the absence of the possibility of its implementation. In aggregate, both methods significantly expand the efficiency and specificity of preoperative planning.
About the Authors
A. S. SmirnovRussian Federation
med. doctor of Neuroradiology department
125047 Moscow, 4-th Tverskaya-Yamskaya str., 16, Burdenko National Scientific and Practical Center for Neurosurgery, Neuroradiology department
+7-926-905-55-61
M. G. Sharaev
Russian Federation
cand. of phys-math. sci., researcher of CDISE
T. V. Melnikova-Pitskhelauri
Russian Federation
cand. of biol. sci., lead. engineer of Neuroradiology department
V. Yu. Zhukov
Russian Federation
cand. of med. sci., med. doctor of 7 Neurosurgery department
A. E. Bikanov
Russian Federation
cand. of med. sci., jr. researcher of 7 Neurosurgery department
E. V. Sharova
Russian Federation
doct. of biol. sci., Head of the Laboratory of common and clinical neurophysiology
E. L. Pogosbekyan
Russian Federation
med. physicist of Neuroradiology department
A. M. Turkin
Russian Federation
cand. of med. sci., senior researcher of Neuroradiology department
L. M. Fadeeva
Russian Federation
lead. engineer of Neuroradiology department
D. V. Pitskhelauri
Russian Federation
doct. of med. sci., Head of 7 Neurosurgery department
V. N. Kornienko
Russian Federation
Full Мember of the Russian Academy of Sciences, doct. of med. sci., Professor, Сonsultant, Neuroradiology department
I. N. Pronin
Russian Federation
Full Мember of the Russian Academy of Sciences, doct. of med. sci., Professor, Head of Neuroradiology department, Deputy Director
References
1. Keles G.E., Chang E.F., Lamborn K.R., Tihan T., Chang C.J., Chang S.M., Berger M.S. Volumetric extent of resection and residual contrast enhancement on initial surgery as predictors of outcome in adult patients with hemispheric anaplastic astrocytoma. J. Neurosurg. 2006; 105: 34–40. DOI: 10.3171/jns.2006.105.1.34.
2. Keles G.E., Lamborn K.R., Berger M.S. Low-grade hemispheric gliomas in adults: a critical review of extent of resection as a factor influencing outcome. J. Neurosurg. 2001; 95: 735–745. DOI: 10.3171/jns.2001.95.5.0735.
3. Lacroix M., Abi-Said D., Fourney D.R., Gokaslan Z.L., Shi W., DeMonte F., Lang F.F., McCutcheon I.E., Hassenbusch S.J., Holland E., Hess K., Michael C., Miller D., Sawaya R. A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J. Neurosurg. 2001; 95: 190–198. DOI: 10.3171/jns.2001.95.2.0190.
4. McGirt M.J., Chaichana K.L., Gathinji M., Attenello F.J., Than K., Olivi A., Weingart J.D., Brem H., Quinones-Hinojosa A.R. Independent association of extent of resection with survival in patients with malignant brain astrocytoma. J. Neurosurg. 2009; 110: 156–162. DOI: 10.3171/2008.4.17536.
5. Sanai N., Mirzadeh Z., Berger M.S. Functional outcome after language mapping for glioma resection. N. Engl. J. Med. 2008; 358: 18–27. DOI: 10.1056/NEJMoa067819.
6. Matthews P.M., Honey G.D., Bullmore E.T. Applications of fMRI in translational medicine and clinical practice. Nat. Rev. Neurosci. 2006; 7: 732–744. DOI: 10.1038/nrn1929.
7. French C.C., Beaumont J.G. A critical review of EEG coherence studies of hemisphere function. Int. J. Psychophysiol. 1984; 1: 241–254.
8. Kiviniemi V., Kantola J.H., Jauhiainen J., Hyvärinen A., Tervonen O. Independent component analysis of nondeterministic fMRI signal sources. Neuroimage. 2003; 19: 253–260.
9. Locatelli T., Cursi M., Liberati D., Franceschi M., Comi G. EEG coherence in Alzheimer’s disease. Electroencephalogr. Clin. Neurophysiol. 1998; 106: 229–237.
10. Smith S.M., Fox P.T., Miller K.L., Glahn D.C., Fox P.M., Mackay C.E., Filippini N., Watkins K.E., Toro R., Laird A.R., Beckmann C.F. Correspondence of the brain’s functional architecture during activation and rest. Proc. Natl. Acad. Sci. USA. 2009; 106: 13040–13045. DOI: 10.1073/pnas.0905267106.
11. Larson-Prior L.J., Zempel J.M., Nolan T.S., Prior F.W., Snyder A.Z., Raichle M.E. Cortical network functional connectivity in the descent to sleep. Proc. Natl. Acad. Sci. USA. 2009; 106: 4489–4494. DOI: 10.1073/pnas.0900924106.
12. Samann P.G., Tully C., Spoormaker V.I., Wetter T.C., Holsboer F., Wehrle R., Czisch M. Increased sleep pressure reduces resting state functional connectivity. MAGMA. 2010; 23: 375–389. DOI: 10.1007/s10334-010-0213-z.
13. Mhuircheartaigh R.N., Rosenorn-Lanng D., Wise R., Jbabdi S., Rogers R., Tracey I. Cortical and subcortical connectivity changes during decreasing levels of consciousness in humans: a functional magnetic resonance imaging study using propofol. J. Neurosci. 2010; 30: 9095–9102. DOI: 10.1523/JNEUROSCI.5516-09.2010.
14. Gusnard D.A., Raichle M.E. Searching for a baseline: functional imaging and the resting humanbrain. Nat. Rev. Neurosci. 2001; 2: 685–694. DOI: 10.1038/35094500.
15. Shulman G.L., Fiez J.A., Corbetta M., Buckner R.L., Miezin F.M., Raichle M.E., Petersen S.E. Common blood flow changes across visual tasks. II. Decreases in cerebral cortex. J. Cogn. Neurosci. 1997; 9: 648–663. DOI: 10.1162/jocn.1997.9.5.648.
16. Greicius M.D., Krasnow B., Reiss A.L., Menon V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. USA. 2003; 100: 253–258. DOI: 10.1073/pnas.0135058100.
17. Beckmann C.F., De Luca M., Devlin J.T., Smith S.M. Investigations into resting-state connectivity using independent component analysis. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2005; 360: 1001–1013. DOI: 10.1098/rstb.2005.1634.
18. Damoiseaux J.S., Rombouts S.A., Barkhof F., Scheltens P., Stam C.J., Smith S.M., Beckmann C.F. Consistent resting-state networks across healthy subjects. Proc. Natl. Acad. Sci. USA. 2006; 103: 13848–13853.
19. De Luca M., Beckmann C.F., De Stefano N., Matthews P.M., Smith S.M. fMRI resting state networks define distinct modes of long-distance interactions in the human brain. Neu-reimage. 2006; 29: 1359–1367. DOI: 10.1016/j.neuroimage.2005.08.035.
20. Lee M.H., Hacker C.D., Snyder A.Z., Corbetta M., Zhang D., Leuthardt E.C., Shimony J.S. Clustering of resting state networks. PLoSOne. 2012; 7: e40370. DOI: 10.1371/journal.pone.0040370.
21. van den Heuvel M., Mandl R., Hulshoff Pol. H. Normalized cut group clustering of resting-state fMRI data. PLoSOne. 2008; 3: e2001. DOI: 10.1371/journal.pone.0002001.
22. Yeo B.T., Krienen F.M., Sepulcre J., Sabuncu M.R., Lashkari D., Hollinshead M., Roffman J.L., Smoller J.W., Zollei L., Polimeni J.R., Fischl B., Liu H., Buckner R.L. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 2011; 106: 1125–1165. DOI: 10.1152/jn.00338.2011.
23. Fox M.D., Snyder A.Z., Vincent J.L., Corbetta M., Van Essen D.C., Raichle M.E. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. USA2005; 102: 9673–9678. DOI: 10.1073/pnas.0504136102.
24. Golland Y., Golland P., Bentin S., Malach R. Data-driven clustering reveals a fundamental subdivision of the human cortex into two global systems. Neuropsychologia. 2008; 46: 540–553. DOI: 10.1016/j.neuropsychologia.2007.10.003.
25. Chai X.J., Castanon A.N., Ongur D., Whitfield- Gabrieli S.: Anticorrelations in resting state networks without global signal regression. Neuroimage. 2012; 59: 1420–1428. DOI: 10.1016/j.neuroimage.2011.08.048.
26. Power J.D., Cohen A.L., Nelson S.M., Wig G.S., Barnes K.A., Church J.A., Vogel A.C., Laumann T.O., Miezin F.M., Schlaggar B.L., Petersen S.E. Functional network organization of the human brain. Neuron. 2011; 72: 665–678. DOI: 10.1016/j.neuron.2011.09.006.
27. Zhang Z., Liao W., Zuo X.N., Wang Z., Yuan C., Jiao Q., Chen H., Biswal B.B., Lu G., LiuY. Resting-state brain organization revealed by functional covariance networks. PLoSOne. 2011; 6: e28817. DOI: 10.1371/journal.pone.0028817.
28. Doucet G., Naveau M., Petit L., Delcroix N., Zago L., Crivello F., Jobard G., Tzourio-Mazoyer N., Mazoyer B., Mellet E., Joliot M. Brain activity at rest:a multiscale hierarchical functional organization. J. Neurophysiol. 2011; 105: 2753–2763. DOI: 10.1152/jn.00895.2010.
29. Jack A.I., Dawson A.J., Begany K.L., Leckie R.L., Barry K.P., Ciccia A.H., Snyder A.Z. fMRI reveals reciprocal inhibition between social and physical cognitive domains. Neuroimage. 2012; 66C: 385–401. DOI: 10.1016/j.neuroimage.2012.10.061.
30. Spreng R.N. The fallacy of a ‘task-negative’ network. Front Psychol. 2012; 3: 145. DOI: 10.3389/fpsyg.2012.00145.
31. Biswal B., Yetkin F.Z., Haughton V.M., Hyde J.S. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 1995; 34: 537–541.
32. Hacker C.D., Laumann T.O., Szrama N.P., Baldassarre A., Snyder A.Z., Leuthardt E.C., Corbetta M. Resting state network estimation in individual subjects. Neuroimage. 2013; 82: 616–633. DOI: 10.1016/j.neuroimage.2013.05.108.
33. Lee M.H., Smyser C.D., Shimony J.S. Resting-state fMRI: a review of methods and clinical applications. Am. J. Neuroradiol. 2013; 34: 1866–1872. DOI: 10.3174/ajnr.A3263.
34. Tomasi D., Volkow N.D. Resting functional connectivity of language networks:characterization and reproducibility. Mol. Psychiatry. 2012; 17: 841–854. DOI: 10.1038/mp.2011.177.
35. Corbetta M., Shulman G.L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 2002; 3: 201–215. DOI: 10.1038/nrn755.
36. Fox M.D., Corbetta M., Snyder A.Z., Vincent J.L., Raichle M.E. Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc. Natl. Acad. Sci. USA. 2006; 103: 10046–10051. DOI: 10.1073/pnas.0604187103.
37. Seeley W.W., Menon V., Schatzberg A.F., Keller J., Glover G.H., Kenna H., Reiss A.L., Greicius M.D. Dissociable intrinsic connectivity networks for salience processing and executive control. J. Neurosci. 2007; 27: 2349–2356. DOI: 10.1523/JNEUROSCI.5587-06.2007.
38. Astafiev S.V., Shulman G.L., Corbetta M. Visuo-spatial reorienting signals in the humantem-poro-parietal junction are independent of response selection. Eur. J. Neurosci. 2006; 23: 591– 596. DOI: 10.1111/j.1460-9568.2005.04573.x.
39. Power J.D., Petersen S.E. Control-related systems in the human brain. Curr. Opin. Neurobiol. 2013; 23: 223–228. DOI: 10.1016/j.conb.2012.12.009.
40. Vincent J.L., Kahn I., Snyder A.Z., Raichle M.E., Buckner R.L. Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. J. Neurophysiol. 2008; 100: 3328–3342. DOI: 10.1152/jn.90355.2008.
41. Dosenbach N.U., Visscher K.M., Palmer E.D., Miezin F.M., Wenger K.K., Kang H.C., Burgund E.D., Grimes A.L., Schlaggar B.L., Petersen S.E. A core system for the implementation of task sets. Neuron. 2006; 50: 799–812. DOI: 10.1016/j.neuron.2006.04.031.
42. Zhang D., Johnston J.M., Fox M.D., Leuthardt E.C., Grubb R.L., Chicoine M.R., Smyth M.D., Snyder A.Z., Raichle M.E., Shimony J.S. Preoperative sensorimotor mapping in brain tumor patients using spontaneous fluctuations in neuronal activity imaged with functional magnetic resonance imaging: initial experience. Neurosurgery. 2009; 65: 226–236. DOI: 10.1227/01.NEU.0000350868.95634.CA.
43. Zhang D., Snyder A.Z., Fox M.D., Sansbury M.W., Shimony J.S., Raichle M.E. Intrinsic functional relations between human cerebralcortex and thalamus. J. Neurophysiol. 2008; 100: 1740–1748. DOI: 10.1152/jn.90463.2008.
44. Quigley M., Cordes D., Wendt G., Turski P., Moritz C., Haughton V., Meyerand M.E. Effect of focal and nonfocal cerebral lesions on functional connectivity studied with MR imaging. Am. J. Neuroradiol. 2001; 22: 294–300.
45. Liu H., Buckner R.L., Talukdar T., Tanaka N., Madsen J.R., Stufflebeam S.M. Task-free presurgical mapping using functional magnetic resonance imaging intrinsic activity. J. Neurosurg. 2009; 111: 746–754. DOI: 10.3171/2008.10.JNS08846.
46. Otten M. L., Mikell C.B., Youngerman B.E., Liston C., Sisti M.B., Bruce J.N., Small S.A., Mc-Khann G.M. 2nd. Motor deficits correlate with resting state motor network connectivity in patients with brain tumours. Brain. 2012; 135: 1017–1026. DOI: 10.1093/brain/aws041.
47. Mitchell T.H., Hacker C.D., Breshears J.D., Szrama N.P., Sharma M., Bundy D.T., Pahwa M., Corbetta M., Snyder A.Z., Shimony J.S., Leuthardt E.C. A novel datadriven approach to preoperative mapping of functional cortex using resting-state functional magnetic resonance imaging. Neurosurgery. 2013; 73: 969–982. DOI: 10.1227/NEU.0000000000000141.
Review
For citations:
Smirnov A.S., Sharaev M.G., Melnikova-Pitskhelauri T.V., Zhukov V.Yu., Bikanov A.E., Sharova E.V., Pogosbekyan E.L., Turkin A.M., Fadeeva L.M., Pitskhelauri D.V., Kornienko V.N., Pronin I.N. Resting state fMRI in pre-surgical brain mapping. Literature review. Medical Visualization. 2018;(5):6-13. (In Russ.) https://doi.org/10.24835/1607-0763-2018-5-6-13