Preview

Medical Visualization

Advanced search

POSSIBILITIES OF CARDIAC MAGNETIC RESONANCE IN SELECTION OF CANDIDATES FOR CARDIAC RESYNCHRONIZATION THERAPY

https://doi.org/10.24835/1607-0763-2018-4-20-31

Abstract

Cardiac resynchronization therapy (CRT) is a contemporary and established treatment for patients with symptomatic heart failure, severely impaired left ventricular (LV) systolic dysfunction and a wide (>150 ms) complex. As with any other treatment, the response to CRT is variable. The degree of preimplant scar burden and scar localization to the vicinity of the LV pacing stimulus are known to influence response and outcome. As well as providing measurements of global and segmental cardiac function, coronary venograghy, CMR also permits localization and quantification of myocardial perfusion and scars. This review explores on the role of CMR in the assessment of patients undergoing CRT, with emphasis on risk stratification and RV and LV leads deployment.

About the Authors

M. D. Utsumueva
National Medical Research Center of cardiology.
Russian Federation

Madina D. Utsumueva – postgraduate student at Electrophysiology and Intervention arrhythmology.

Moscow.


N. A. Mironova
National Medical Research Center of cardiology.
Russian Federation

Natalia A. Mironova – cand. of med. sci., a senior researcher at Electrophysiology and Intervention arrhythmology.

Moscow.


S. Yu. Kashtanova
National Medical Research Center of cardiology.
Russian Federation

Svetlana Yu. Kashtanova – post-graduate student at Electrophysiology and Intervention arrhythmology.

Moscow.


O. V. Stukalova
National Medical Research Center of cardiology.
Russian Federation

Olga V. Stukalova – cand. of med. sci., a senior researcher at Tomography.

Moscow.


References

1. Cleland J.G.F., Daubert J.-C., Erdmann E., Freemantle N., Gras D., Kappenberger L., Tavazzi L., for the Cardiac Resynchronization–Heart Failure (CARE-HF) Study Investigators. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N. Engl. J. Med. 2005; 352: 1539–1549. DOI: 10.1056/nejmoa050496.

2. Bristow M.R., Saxon L.A., Boehmer J., Krueger S., Kass D.A., De Marco T., Carson P., DiCarlo L., DeMets D., White B.G., DeVries D.W., Feldman A.M. Cardiac-Resynchronization Therapy with or without an Implantable Defibrillator in Advanced Chronic Heart Failure. N. Engl. J. Med. 2004; 350: 2140–2150. DOI: 10.1056/nejmoa032423.

3. Moss A.J., Hall W.J., Cannom D.S., Klein H., Brown M.W., Daubert J.P., Mark Estes N.A., Foster E., Greenberg H., Higgins S.L., Pfeffer M.A., Solomon S.D., Wilber D., Zareba W. Cardiac-resynchronization therapy for the prevention of heart-failure events. N. Engl. J. Med. 2009; 361: 1329–1338. DOI: 10.1056/nejmoa0906431.

4. Gervais R., Leclercq C., Shankar A., Jacobs S., Eiskjaer H., Johannessen A., Freemantle N., Cleland J.G.F., Tavazzi L., Daubert C., on behalf of the CARE-HF investigators. Surface electrocardiogram to predict outcome in candidates for cardiac resynchronization therapy: a subanalysis of the CARE-HF trial. Eur. J. Heart Fail. 2009; 11: 699–705. DOI: 10.1093/eurjhf/hfp074.

5. Leclercq C., Kass D.A. Retiming the failing heart: principles and current status of cardiac resynchronization. J. Am. Coll. Cardiol. 2002; 39: 194–201. DOI: 10.1016/s0735-1097(01)01747-8.

6. Leyva F., Foley P.W.X., Chalil S., Ratib K., Smith R.E.A., Prinzen F., Auricchio A. Cardiac resynchronisation therapy guided by late gadolinium-enhancement cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 2011; 13: 29–35. DOI: 10.1186/1532-429x-13-29.

7. Bleeker G.B. Effect of posterolateral scar tissue on clinical and echocardiographic improvement after cardiac resynchro nization therapy. Circulation. 2006; 113: 969–976. DOI: 10.1161/circulationaha.105.543678.

8. Chalil S., Foley P.W.X., Muyhaldeen S.A., Patel K.C.R., Yousef Z.R., Smith R.E.A., Frenneaux M.P., Leyva F. Late gadolinium enhancement cardiovascular magnetic resonance as a predictor of response to cardiac resynchronization therapy in patients with ischaemic cardiomyopathy. Europace. 2007; 9: 1031–1037. DOI: 10.1093/europace/eum133.

9. Chalil S., Stegemann B., Muhyaldeen S., Khadjool K., Foley P.W., Smith R.E.A., Leyva F. Effect of posterolateral left ventricular scar on mortality and morbidity following cardiac resynchronization therapy. Pacing Clin. Electrophysiol. 2007; 10: 1201–1207. DOI: 10.1111/j.1540-8159.2007.00841.x.

10. Adelstein E.C., Saba S. Scar burden by myocardial perfusion imaging predicts echocardiographic response to cardiac resynchronization therapy in ischemic cardiomyopathy. Am. Heart J. 2007; 153: 105–112. DOI: 10.1016/j.ahj.2006.10.015.

11. Ypenburg C., Roes S.D., Bleeker G.B., Kaandorp T.A.M., de Roos A., Schalij M.J., van der Wall E.E., Bax J.J. Effect of total scar burden on contrast-enhanced magnetic resonance imaging on response to cardiac resynchronization therapy. Am. J. Cardiol. 2007; 99(5): 657–660. DOI: 10.1016/j.amjcard.2006.09.115.

12. Riedlbauchova L., Brunken R., Jaber W.A., Popova L., Patel D., LanskaV., Civello K., Cummings J., Burkhardt J.D., Saliba W., Martin D., Schweikert R., Wilkoff B.L., Grimm R., Natale A. The impact of myocardial viability on the clinical outcome of cardiac resynchronization therapy. J. Cardio vasc. Electrophysiol. 2009; 20: 50–57. DOI: 10.1111/j.1540-8167.2008.01294.x.

13. Mershina E.A., Selyavko Yu.A., Kuzina S.V., Sinitsyn V.E., Dzemeshkevich S.L. Chocardiography and cardiac magnetic resonance in the assessment of left ventricular remodeling during the first year after aortic valve replacement. Russian Electronic Journal of Radiology. 2011; 1(2): 24–35. (In Russian)

14. Stukalova O.V. Late enhancement contrast cardiac MRI – new diagnostic tool in cardiac diseases. Russian Electronic Journal of Radiology. 2013; 3 (1): 7–18. (In Russian)

15. Mewton N., Liu C.Y., Croisille P., Bluemke D., Lima J.A. Assessment of myocardial fibrosis with cardiovascular magnetic resonance. J. Am. Coll. Cardiol. 2011; 57: 891–903. DOI: 10.1016/j.jacc.2010.11.013.

16. Yokokawa M., Tada H., Toyama T., Koyama K., Naito S., Oshima S., Taniguchi K. Magnetic resonance imaging is superior to cardiac scintigraphy to identify nonresponders to cardiac resynchronization therapy. Pacing Clin. Electrophysiol. 2009; 32 (Suppl.1): S57–62. DOI: 10.1111/j.1540-8159.2008.02227.x.

17. Alpert J.S., Thygesen K., Antman E. Myocardial infarction redefined–a consensus document of the Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. J. Am. Coll. Cardiol. 2000; 36: 959–969. DOI: 10.1053/euhj.2000.2305.

18. Schelbert E.B., Cao J.J., Sigurdsson S., Aspelund T., Kellman P., Aletras A.H., Dyke C.K., Thorgeirsson G., Eiriksdottir G., Launer L.J., Gudnason V., Harris T.B., Arai A.E. Prevalence and prognosis of unrecognized myocardial infarction determined by cardiac magnetic resonance in older adults. JAMA. 2012; 308: 890–896. DOI: 10.1001/2012.jama.11089.

19. Leyva F. The Role of Cardiovascular Magnetic Resonance in Cardiac Resynchronization Therapy. Heart Fail. Clin. 2017; 13 (1): 63–77. DOI: 10.1016/j.hfc.2016.07.006.

20. Wagner A., Mahrholdt H., Holly T.A., Elliott M.D., Regenfus M., Parker M., Klocke F.J., Bonow R.O., Kim R.J., Judd R.M.. Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. Lancet. 2003; 361: 374–379. DOI: 10.1016/s0140-6736(03)12389-6.

21. Kim R.J., Wu E., Rafael A., Chen E.L., Parker M.A., Simonetti O., Klocke F.J., Bonow R.O., Judd R.M. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N. Engl. J. Med. 2000; 343: 1445–1453. DOI: 10.1056/nejm200011163432003.

22. Aparina O.P., Stukalova O.V., Parkhomenko D.V., Mironova N., Strazdenj E.Y., Ternovoy S.K., Golitsyn S.P. Structural and functional properties of the left atrium in health volunteers and patients with atrial fibrillation: data of magnetic resonance imaging. Kardiologiia. 2017; 57 (9): 5–13. DOI: 10.18087/cardio.2017.9.10029. (In Russian)

23. Perrone-Filardi P., Pace L., Prastaro M., Squame F., Betocchi S., Soricelli A., Piscione F., Indolfi C., Crisci T., Salvatore M., Chiariello M. Assessment of myocardial viability in patients with chronic coronary artery disease: rest-4-hour-24-hour 201T1 tomography versus dobutamine echocardiography. Circulation. 1996; 94: 2712–2719. DOI: 10.1161/01.cir.94.11.2712.

24. Pagley P.R., Beller G.A., Watson D.D., Gimple L.W., Ragosta M. Improved outcome after coronary bypass surgery in patients with ischemic cardiomyopathy and residual myocardial viability. Circulation. 1997; 96: 793–800. DOI: 10.1161/01.cir.96.3.793.

25. Di Carli M.F., Maddahi J., Rokhsar S., Schelbert H.R., Bianco-Batlles D., Brunken R.C., Fromm B. Long-term survival of patients with coronary artery disease and left ventricular dysfunction: implications for the role of myocardial viability assessment in management decisions. J. Thorac. Cardiovasc. Surg. 1998; 116: 997–1004. DOI: 10.1016/s0022-5223(98)70052-2.

26. Klem I., Weinsaft J.W., Bahnson T.D., Hegland D., Kim H.W., Hayes B., Parker M.A., Judd R.M., Kim R.J. Assessment of Myocardial Scarring Improves Risk Stratification in Patients Evaluated for Cardiac Defibrillator Implantation. J. Am. Coll. Cardiol. 2012; 60 (5): 408–420. DOI: 10.1016/j.jacc.2012.02.070.

27. Wang L., Gharbia O.A., Horacek B.M., Sapp J.L. Noninvasive epicardial and endocardial electrocardiographic imaging of scar-related ventricular tachycardia. J. Electrocardiol. 2016; 49: 887–893. DOI: 10.1016/j.jelectrocard.2016.07.026.

28. Schmidt A., Azevedo C.F., Cheng A., Gupta S.N., Bluemke D.A., Foo T.K., Gerstenblith G., Weiss R.G., Marban E., Tomaselli G.F., Lima J.A.C., Wu K.C. Infarct Tissue Heterogeneity by Magnetic Resonance Imaging Identifies Enhanced Cardiac Arrhythmia Susceptibility in Patients With Left Ventricular Dysfunction. Circulation. 2007; 115 (15): 2006–2014. DOI: 10.1161/circulationaha.106.653568.

29. Kyoung K., Chattranukulchai P., Klem I. Cardiac magnetic resonance scar imaging for sudden cardiac death risk stratification in patients with non-ischemic cardiomyopathy. Korean J. Radiol. 2015; 16: 683–695. DOI: 10.3348/kjr.2015.16.4.683.

30. Gulati A., Jabbour A., Ismail T. F., Guha K., Khwaja J., Raza S., Prasad S.K. Association of Fibrosis With Mortality and Sudden Cardiac Death in Patients With Nonischemic Dilated Cardiomyopathy. JAMA. 2013; 309 (9): 896. DOI: 10.1001/jama.2013.1363.

31. Leyva F., Taylor R.J., Foley P.W.X., Umar F., Mulligan L.J., Patel K., Stegemann B., Haddad T., Smith R.E.A., Prasad S.K. Left ventricular midwall brosis as a predictor of mortality and morbidity after cardiac resynchronization therapy in patients with nonischemic cardiomyopathy. J. Am. Coll. Cardiol. 2012; 60 (17): 1659–1667. DOI: 10.1016/j.jacc.2012.05.054.

32. Calore C., Cacciavillani L., Boffa G.M., Silva C., Tiso E., Marra M.P., Bacchiega E., Corbetti F., Iliceto S. Contrastenhanced cardiovascular magnetic resonance in primary and ischemic dilated cardiomyopathy. J. Cardiovasc. Med. 2007; 8: 821–829. DOI: 10.2459/jcm.0b013e3280101e3c.

33. Assomull R.G., Prasad S.K., Lyne J., Smith G., Burman E.D., Khan M., Sheppard M.N., Poole-Wilson P.A., Pennell D.J. Cardiovascular magnetic resonance, fibrosis, and prognosis in dilated cardiomyopathy. J. Am. Coll. Cardiol. 2006; 48: 1977–1985. DOI: 10.1016/j.jacc.2006.07.049.

34. Hombach V., Merkle N., Torzewski J., Kraus J.M., Kunze M., Zimmermann O., Kestler H.A., Wohrle J. Electrocardiographic and cardiac magnetic resonance imaging parameters as predictor of a worst out- come in patients with idiopathic dilated cardiomyopathy. Eur. Heart J. 2009; 30: 2011–2018. DOI: 10.1093/eurheartj/ehp293.

35. Felker G.M., Thompson R.E., Hare J.M., Hruban R.H., Clemetson D.E., Howard D.L., Baughman K.L., Kasper E.K. Underlying causes and long-term survival in patients with initially unexplained cardiomyopathy. N. Engl. J. Med. 2000; 342: 1077–1084. DOI: 10.1056/nejm200004133421502.

36. Gutberlet M., Spors B., Thoma T., Bertram H., Denecke T., Felix R., Noutsias M., Schultheiss H.P., Kuhl U. Suspected chronic myocarditis at cardiac MR: diagnostic accuracy and association with immunohistologically detected inflammation and viral persistence. Radiology. 2008; 246: 401–409. DOI: 10.1148/radiol.2461062179.

37. Mahrholdt H., Goedecke C., Wagner A., Meinhardt G., Athanasiadis A., Vogelsberg H., Fritz P., Klingel K., Kandolf R., Sechtem U. Cardiovascular magnetic resonance assessment of human myocarditis: a com parison to histology and molecular pathology. Circulation. 2004; 109: 1250–1258. DOI: 10.1161/01.cir.0000118493.13323.81.

38. Foley P., Hamilton M., Leyva F. Myocardial scarring following chemotherapy for multiple myeloma detected using late gadolinium hyperenhancement cardiovascular magnetic resonance. J. Cardiovasc. Med. 2010; 11: 386–388. DOI: 10.2459/jcm.0b013e32832f3ff2.

39. Catalano O., Antonaci S., Moro G., Baldi M., Cobelli F., Opasich C. Contrast-enhanced cardiac magnetic resonance in a patient with chemotoxic cardiomyopathy. J. Cardiovasc. Med. 2007; 8: 214–215. DOI: 10.2459/jcm.0b013e3280104155.

40. Silva M., Meira Z., Gurgel Giannetti J., da Silva M.M., Campos A.F., Barbosa M. de M., Starling Filho G.M., Ferreira R. de A., Zatz M., Rochitte C.E.. Myocardial delayed enhancement by magnetic resonance imaging in patients with muscular dystrophy. J. Am. Coll. Cardiol. 2007; 49: 1874–1879. DOI: 10.1016/j.jacc.2006.10.078.

41. Tzelepis G., Kelekis N., Plastiras S., Mitseas P., Economopoulos N., Kampolis C., Gialafos E.J., Moyssakis I., Moutsopoulos H.M. Pattern and distribution of myocardial fibrosis in systemic sclerosis: a delayed enhanced magnetic resonance imaging study. Arthr. Rheum. 2007; 56: 3827–3836. DOI: 10.1002/art.22971.

42. Daubert C., Gold M.R., Abraham W.T., Ghio S., Hassager C., Goode G., Szili-Torok T., Linde C. Prevention of disease progression by cardiac resynchronization therapy in patients with asymptomatic or mildly symptomatic left ventricular dysfunction: insights from the European cohort of the REVERSE (Resynchronization Reverses Remodeling in Systolic Left Ventricular Dysfunction) trial. J. Am. Coll. Cardiol. 2009; 54 (20): 1837–1846. DOI: 10.1016/j.jacc.2009.08.011.

43. Chalil S., Stegemann B., Muhyaldeen S., Khadjooi K., Smith R.E.A., Jordan P.J., Leyva F. Intraventricular dyssynchrony predicts mortality and morbidity following cardiac resynchronization therapy: a study using cardiovascular magnetic resonance tissue synchronization imaging. J. Am. Coll. Cardiol. 2007; 50: 243–52. DOI: 10.1016/j.jacc.2007.03.035.

44. White J.A., Yee R., Yuan X., Krahn A., Skanes A., Parker M., Klein G., Drangova M. Delayed enhancement magnetic resonance imaging predicts response to cardiac resynchronization therapy in patients with intraventricular dyssynchrony. J. Am. Coll. Cardiol. 2006; 48: 1953–1960. DOI: 10.1016/j.jacc.2006.07.046.

45. Chen Z., Sohal M., Sammut E., Child N., Jackson T., Claridge S., Cooklin M., O’Neill M., Wright M., Gill J., Chiribiri A., Schaeffter T., Carr-White G., Razavi R., Aldo Rinaldi C. Focal but not diffuse myocardial fibrosis burden quantification using cardiac magnetic resonance imaging predicts left ventricular reverse modeling following cardiac resynchronization therapy. J. Cardiovasc. Electrophysiol. 2016; 27 (2): 203–209. DOI: 10.1111/jce.12855.

46. Leong D.P., Chakrabarty A., Shipp N., Molaee P., Madsen P.L., Joerg L., Sullivan T., Worthley S.G., De Pasquale C.G., Sanders P., Selvanayagam J.B. Effects of myocardial fibrosis and ventricular dyssynchrony on response to therapy in new-presentation idiopathic dilated cardiomyopathy: insights from cardiovascular magnetic resonance and echocardiography. Eur. Heart J. 2012; 33(5): 640–648. DOI: 10.1093/eurheartj/ehr391.

47. El-Sherif N., Hope R.R., Scherlag B.J., Lazzara R. Reentrant ventricular arrhythmias in the late myocardial infarction period. 2. Patterns of initiation and termination of re-entry. Circulation. 1977; 55 (5): 702–719. DOI: 10.1161/01.cir.55.5.702.

48. El-Sherif N., Scherlag B.J., Lazzara R., Hope R.R. Re-entrant ventricular arrhythmias in the late myocardial infarction period. 1. Conduction characteristics in the infarction zone. Circulation. 1977; 55 (5): 686–702. DOI: 10.1161/01.cir.55.5.686.

49. Mehra R., Zeiler R.H., Gough W.B., El-Sherif N. Reentrant ventricular arrhythmias in the late myocardial infarction period. 9. Electrophysiologic-anatomic correlation of reentrant circuits. Circulation. 1983; 67 (1): 11–24. DOI: 10.1161/01.cir.67.1.11.

50. Duckett S.G., Ginks M., Shetty A., Kirubakaran S., Bostock J., Kapetanakis S., Gill J., Carr-White G., Razavi R., Rinaldi C.A. Adverse response to cardiac resynchronisation therapy in patients with septal scar on cardiac MRI preventing a septal right ventricular lead position. J. Interv. Card. Electrophysiol. 2012; 33 (2): 151–160. DOI: 10.1007/s10840-011-9630-9.

51. Prinzen F.W., Hunter W.C., Wyman B.T, McVeigh E.R. Mapping of regional myocardial strain and work during ventricular pacing: experimental study using magnetic resonance imaging tagging. J. Am. Coll. Cardiol. 1999; 33: 1735–1742. DOI: 10.1016/s0735-1097(99)00068-6.

52. The DAVID Trial Investigators. Dual-chamber pacing or ventricular back-up pacing in patients with an implantable defibrillator: the Dual Chamber and VVI Implantable Defibrillator (DAVID) Trial. JAMA. 2002; 288: 3115–3123. DOI: 10.1001/jama.288.24.3115.

53. Hayes J.J., Sharma A.D., Love J.C., Herre J.M., Leonen A.O., Kudenchuk P.J. Abnormal conduction increases risk of adverse outcomes from right ventricular pacing. J. Am. Coll. Cardiol. 2006; 48: 1628–1633. DOI: 10.1016/j.jacc.2006.05.071.

54. Sweeney M.O. Adverse effect of ventricular pacing on heart failure and atrial fibrillation among patients with normal baseline QRS duration in a clinical trial of pacemaker therapy for sinus node dysfunction. Circulation. 2003; 107: 2932–2937. DOI: 10.1161/01.cir.0000072769.17295.b1.

55. Leclercq C., Sadoul N., Mont L., Defaye P., Osca J., Mouton E., Isnard R., Habib G., Zamorano J., Derumeaux G., Fernandez-Lozano I. Comparison of right ventricular septal pacing and right ventricular apical pacing in patients receiving cardiac resynchronization therapy defibrillators: the SEPTAL CRT Study. Eur. Heart J. 2013; 37 (5): 473–483. DOI: 10.1093/eurheartj/ehv422.

56. Wong J.A., Yee R., Stirrat J., Scholl D., Krahn A.D., Gula L.J., Skanes A.C., Leong-Sit P., Klein G.J., McCarty D., Fine N., Goela A., Islam A., Thompson T., Drangova M., White J.A. Influence of pacing site characteristics on response to cardiac resynchronization therapy. Circulation. 2013; 6: 542–550. DOI: 10.1161/circimaging.111.000146.

57. Nezafat R., Han Y., Peters D.C., Herzka D.A., Wylie J.V., Goddu B., Kissinger K.K., Yeon S.B., Zimetbaum P.J., Manning W.J. Coronary magnetic resonance vein imaging: imaging contrast, sequence, and timing. Magn. Reson. Med. 2007; 58: 1196–1206. DOI: 10.1002/mrm.21395.

58. Sinitsyn V.E., Ternovoj S.K.. Stukalova O.V.. Timonina E.A. Magnetic resonance phlebography. Visualisation in the clinic. 1997; 11: 6–9. (In Russian)

59. White J.A., Fine N., Gula L.J., Yee R., Al-Admawi M. Zhang Q., Krahn A., A. Skanes, MacDonald A., Peters T., Drangova M. Fused whole-heart coronary and myocardial scar imaging using 3-T CMR. Implications for planning of cardiac resynchronization therapy and coronary revascularization. JACC Cardiovasc Imaging. 2010; 3: 921–930. DOI: 10.1016/j.jcmg.2010.05.014.


Review

For citations:


Utsumueva M.D., Mironova N.A., Kashtanova S.Yu., Stukalova O.V. POSSIBILITIES OF CARDIAC MAGNETIC RESONANCE IN SELECTION OF CANDIDATES FOR CARDIAC RESYNCHRONIZATION THERAPY. Medical Visualization. 2018;(4):20-31. (In Russ.) https://doi.org/10.24835/1607-0763-2018-4-20-31

Views: 1199


ISSN 1607-0763 (Print)
ISSN 2408-9516 (Online)