Oscillations of Bone Mineral Density in Peri-Prosthetic Zone after Total Hip Arthroplasty (Case Report)
https://doi.org/10.24835/1607-0763-2017-5-131-141
Abstract
The hundreds thousands total hip arthroplasties (THA) annually performed around the world with the number of revision procedures estimated around 10%. Dual-energy X-ray absorptiometry (DEXA) allows to control projectional bone mineral density (BMD) around hip stem dynamically with minor radiation exposure and in a cost-effective way. In routine practice there is a monthly interval between investigations that does not allow to evaluate activity and trends in short weekly oscillations of bone metabolism in peri-prothetic areas. Projectional BMD oscillations in peri-prosthetic zone after total hip arthroplasty in chrono-biological manner evalua ted for the first time. Therefore chronobiologic approach opens new opportunities for prognosis of tendencies in structural and functional skeleton reorganization in peri-prothetic zone after THA but there is need in further research that could give more insight.
About the Authors
A. S. AvruninRussian Federation
doct. of med. sci., senior researcher of the diagnosis and treatment of musculoskeletal system diseases and injuries department of “Vreden Russian Research Institute of Traumatology and Orthopedics”, St-Petersburg
A. A. Pavlychev
Russian Federation
doct. of phys.-math. sci., professor of Solid State Electronics Department of St-Petersburg State University, St-Petersburg
7/9 Universitetskaya Emb., St Petersburg 199034, Russia. Saint Petersburg University, solid state electronics department, faculty of physics. Phone: 812-428-43-54
A. A. Doctorov
Russian Federation
doct. of med. sci., professor the Head of Morphology Department of All-Russian Research Institute of Medical and Aromatic Plant, Moscow
N. N. Kornilov
Russian Federation
doct. of med. sci., professor of Chair of Traumatology and Orthopaedics, Leading Scientific Worker of the Knee Pathology Department, the head of the Knee Surgery Department N 17 of Vreden Russian Research Institute of Traumatology and Orthopaedics, St-Petersburg
M. P. Karagodina
Russian Federation
roentgenologist of roentgenologic department of Vreden Russian Research Institute of Traumatology and Orthopedics, St-Petersburg
References
1. Ang К.С., das De S., Goh J.С.H. et al. Periprosthetic bone remodelling after cementless total hip replacement. A prospective comparison of two different implant designs. J. Bone J. Surg. (Br.). 1997; 79-B: 675–679.
2. Boden H., Adolphson P. No adverse effects of early weight bearing after uncemented total hip arthroplasty. A randomized study of 20 patients. Acta Orthop. Scand. 2004; 75 (1): 21–29.
3. Boden H.S.G., Sköldenberg O.G., Salemyr M.O.F., Lundberg H.-J., Adolphson P.Y. Continuous bone loss around a tapered uncemented femoral stem. A long-term evaluation with DEXA. Acta Orthopaedica. 2006; 77 (6): 877–885.
4. Avrunin A.S., Tikhilov R.M., Shubniakov I.I., Ganeva M.P, Pliev D.G., Popov V.V., Tovpich I.D. Reproducibility error of DERA metod in PBMD measurement around a noncemented “SPOTORNO” stem (experimental research). Travmatologya i ortopediya Rossii. 2009; 2: 89–95. (In Russian)
5. Venesmaa P.K., Kröger H.P.J., Jurvelin J.S. et al. Periprosthetic bone loss after cemented total hip arthroplasty. A prospective 5-year dual energy radiographic absorptiometry study of 15 patients. Acta Orthop. Scand. 2003; 74 (1): 31–36.
6. Cohen B., Rushton N. Accuracy of DEXA measurement of bone mineral density after total hip arthroplasty. J. Bone J. Surg. (Br.). 1995; 77-B: 479–483.
7. Avrunin A.S., Tikhilov R.M. History and morfologic markers of osteocyte remodelling. Morphologiya. 2011; 1: 86–94. (In Russian)
8. Baud C.A. Morphologie et structure inframicroscopique des osteocytes. Acta Anat. 1962; 51: 209–225.
9. Belanger L.F., Migicovsky B.B. Histochemical evidence of proteolysis in bone: the influence of parathormone. J. Histochem. Cytochem. 1963; 11: 734–737.
10. Belanger L.F., Robichon J. Parathormone-induced osteolysis in dogs: a microradiographic and alpharadiographic survey. J. Bone J. Surg. 1964; 46-A (5): 1008–1012.
11. Belanger L.F., Drouin P. Osteolysis in the frog. The effects of parathormone. Canadian J. Physiol. Pharmacol. 1966; 44: 919–922.
12. Belanger L.F. Resorption of cementum by cementocyte activity (Cementolysis). Calc. Tiss. Res. 1968; 2: 229–236.
13. Belanger L.F. Osteocytic osteolysis. Calc. Tiss. Res. 1969; 4: 1–12.
14. Tazawa K., Hoshi K., Kawamoto S. et al. Osteocytic osteolysis observed in rats to which parathyroid hormone was continuously administered. J. Bone Miner. Metab. 2004; 22 (6): 524–529.
15. Lane N.E., Yao W., Balooch M. Nalla R.К., Balooch G., Habelitz S., Kinney J.H., Bonewald L.F. Glucocorticoidtreated mice have localized changes in trabecular bone material properties and osteocyte lacunar size that are not observed in placebo- treated or estrogen-deficient mice. J. Bone Miner. Res. 2006; 21 (3): 466–476.
16. Frost H.M. Muscle, bone, and the Utah paradigm: A 1999 overview. Med. Sci. Sports. Exerc. 2000; 32 (5): 911–917.
17. Frost H.M. New targets for the studies of biomechanical, endocrinologic, genetic and pharmaceutical effects on bones: bone's “nephron equivalents”, muscle, neuromuscular physiology. J. Musculoskeletal. Res. 2000; 4 (2): 67–84.
18. Dempster D.W. Bone remodeling. In book: Osteoporosis. An aetiology, diagnostics treatment. SPb.: BINOM, Nevskiy dialekt, 2000: 85–107. (In Russian)
19. Kornilov N.V., Avrunin A.S. Adaptational processes in bone tissue. SPb.: Morsar A.V., 2001. 296 p. (In Russian)
20. Swinson D.R., Tam C.S., Reed R. Bone growth kinetics. 4. A preliminary investigation on a biorhythm in human osteogenesis. J. Pathol. 1975; 106 (1): 13–16.
21. Deryapa N.R., Moshkin M.P., Postnyy V.S. Problems of medical biorhythmology. M.: Meditsina, 1985, 206 p. (In Russian)
22. Avrunin A.S., Tikhilov R.M., Shubniakov I.I., Emelianov V.G. Does double-energy roentgen absorbtiometry allow estimation of mineral matrix physiological metabolism? Geniy ortopedii. 2008; 1: 41–49. (In Russian)
23. Avrunin A.S., Tikhilov R.M., Shubniakov I.I., Emelianov V.G. Non-invasive clinical method of osteocyte remodeling evaluation. New perspectives of dual-energy roentgen absorptiometry (DEXA) Ortopediya, travmatologiya i protezirovaniye. 2008; 2: 67–74. (In Russian)
24. Avrunin A.S., Tikhilov R.M., Shubniakov I.I., Emelianov V.G. Does the method of dual-energy roentgen absorption (DERA) allow estimating of quick rippling bone mineral density in lumbar vertebras? Vestnik travmatologii i ortopedii im. N.N.Priorova. 2008; 3: 47–52. (In Russian)
25. Avrunin A.S., Tikhilov R.M., Shubniakov I.I. A non-invasive method of dynamic estimation of bone tissue osteocyte remodeling. Morphologiya. 2009; 2: 66–73. (In Russian)
26. Avrunin A.S., Tikhilov R.M., Shoubniakov I.I., Pliev D.G., Popov V.V., Emelianov V.G. Distal area of forearm bones. Minimally necessary number of PMBD measurements with DERA in individual diagnosis of osteoporosis and skeletal state monitoring (preliminary recommendations). Ortopediya, travmatologiya i protezirovaniye. 2009; 1: 49–56. (In Russian)
27. Avrunin A.S., Golikov V.Yu., Sarycheva S.S., Tikhilov R.M., Shoubniakov I.I., Ganeva M.P, Tovpich I.D., Pliev D.G. Radiation doses of patients at using of x-ray densitometr prodigy for individualmonitoring of bone tissue density. Medical radiology and radiation. 2009; 54 (4): 32–37. (In Russian)
28. Bonnick S.L., Lewis L.A. Bone densitometry for technologists. Humana Press Inc. Totowa, New Jersey, 2006. 416 p.
29. Kryzhanovskiy G.N. Biological rhythms and the law of structural and functional discreteness in biological processes In: Biologiches rhythms in mechanisms of indemnification of the broken functions. M.: Medicina, 1973: 20–34. (In Russian)
30. Kryzhanovskiy G.N. Disorder of the nervous regulation. In: Pathology of nervous regulation of functions. M.: Medicina, 1987: 5–42. (In Russian)
31. Pavlychev A.A., Avrunin A.S., Vinogradov A.S., Fila tova E.O., Doctorov A.A., Krivosenko Yu.S., Samoilenko D.O., Svirskiy G.I., Konashuk A.S., Rostov D.A. Local electronic structure and nanolevel hierarchical organization of bone tissue: theory and NEXAFS study. Nanotechnology. 2016; 27 ( 50): 4002 (8pp). DOI:10.1088/0957-4484/27/50/504002.
32. Avrunin A.S., Pavlychev A.A., Doctorov A.A., Vinogradov A.S., Samoilenko D.O., Svirsky G.I. Influence of the skeleton hierarchical organization on electronic state of ions in bone matrix. Travmatologya i ortopediya Rossii. 2016; 22 (4): 88–97. (In Russian) DOI: 10.21823/2311-2905-2016-22-4-88-97.
Review
For citations:
Avrunin A.S., Pavlychev A.A., Doctorov A.A., Kornilov N.N., Karagodina M.P. Oscillations of Bone Mineral Density in Peri-Prosthetic Zone after Total Hip Arthroplasty (Case Report). Medical Visualization. 2017;(5):131-141. (In Russ.) https://doi.org/10.24835/1607-0763-2017-5-131-141