PET/CT with 18F-Fluoroethyl-L-Tyrosine in Diagnosis of Radiation Necrosis of the Temporal Lobe after Radiotherapy for Nasopharyngeal Carcinoma (Clinical Case)
https://doi.org/10.24835/1607-0763-2017-5-18-28
Abstract
Clinical case of the patient with nasopharyngeal carcinoma
after stereotactic radiosurgical treatment for the persistent disease after chemoradiotherapyare presented. The diagnostic data of PET/CTwith 18F-Fluoroethyl-Ltyrosine (18F-FET)and MRI with intravenous contrastof head and neck were included in analysis. There was analyzeda clinical case of differential diagnosis of changes in thetemporal lobe of the brain after stereotactic radiation therapy of nasopharyngeal carcinoma using PET/CT with 18F-FET. Identified high diagnostic accuracy in the differential diagnosis of delayed changes in the brain (tumor or radiation necrosis) after radiation therapy ofnasopharyngeal carcinoma.
About the Authors
A. S. LyuosevRussian Federation
medical doctor of PET department of N.N. Blokhin NMRCO, Moscow
115478 Moscow, Kashirskoe shosse, 23. Department of positronemission tomography of N.N. Blokhin NMRCO. Phone: +7-909-626-82-81
M. B. Dolgushin
Russian Federation
doct. of med. sci., head of PET department of N.N. Blokhin NMRCO, Moscow
A. I. Pronin
Russian Federation
medical doctor of PET department of N.N. Blokhin NMRCO, Moscow
A. V. Nazarenko
Russian Federation
cand. of med. sci., head of Radiological department of N.N. Blokhin NMRCO, Moscow
N. A. Meshcheriakova
Russian Federation
medical doctor of PET department of N.N. Blokhin NMRCO, Moscow
D. I. Nevzorov
Russian Federation
engineer radiochemist of PET department ofN.N. Blokhin NMRCO, Moscow
S. B. Alieva
Russian Federation
doct. of med. sci., Radiological department of N.N. Blokhin NMRCO, Moscow
References
1. Chen J., Dassarath M., Yin Z., Liu H., Yang K., Wu G. Radiation induced temporal lobe necrosis in patients with nasopharyngeal carcinoma: a review of new avenues in its management. Radiation Oncology. 2011; 6: 128. DOI: 10.1186/1748-717X-6-128.
2. De Salvo M.N. Radiation necrosis of the pons after radiotherapy for nasopharyngeal carcinoma: diagnosis and treatment. J. Radiol. Case Rep. 2012; 6 (7): 9–16. DOI: 10.3941/jrcr.v6i7.1108.
3. Hsu Y.-C., Wang L.-F., Lee K.-W., Ho K.-Y., Huang C.-J., Kuo W.-R. Сerebral radionecrosis in patients with nasopharyngeal carcinoma. Kaohsiung J. Med. Sci. 2005; 21 (10): 452–459. DOI: 10.1016/S1607-551X(09)70150-0.
4. Sheline G.E., Wara W.M., Smith V. Therapeutic irradiation and brain injury. Int. J. Radiat. Oncol. Biol. Phys. 1980; 6: 1215–1228.
5. Qin D.X., Hu Y.H., Yan J.H., Xu G.Z., Cai W.M., Wu X.L., Cao D.X., Gu X.Z. Analysis of 1379 patients with nasopharyngeal carcinoma treated by radiation. Cancer. 1988; 61: 1117–1124.
6. Lee A.W., Ng S.H., Ho J.H., Tse V.K., Poon Y.F., Tse C.C., Au G.K., O S.K., Lau W.H., Foo W.W. Clinical diagnosis of late temporal lobe necrosis following radiation therapy for nasopharyngeal carcinoma. Cancer. 1988; 61: 1535–1542.
7. Fischer A.W., Holfelder H. Lokales Amyloid in Gehirn. Einespatfolge von rontgenbestrahlungen. Dtsch. Z. Chir. 1930; 227: 475–483.
8. Glass J.P.,Hwang T.L., Leavens M.E., Libshitz H.I. Cerebral radiation necrosis following treatment of extracranial malignancies. Cancer. 1984; 54: 1966–1972.
9. MarksJ. E., Wong J. The risk of cerebral radionecrosis in relation to dose, time and fractionation: a follow-up study. Prog. Exp. Tumor Res. 1985; 29: 210–218.
10. Ruben J.D., Dally М., Bailey М., Smith R., McLean C.A., Fedele P. Cerebral radiation necrosis: incidence, outcomes, and risk factors with emphasis on radiation
11. parameters and chemotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2006; 65: 499–508. DOI: 10.1016/j.ijrobp.2005.12.002.
12. Savintseva Zh.I., Skvortsova T.Yu., Brodskaya Z.L. Modern neuroimaging techniques in the differential diagnosis of radiation injuries of the brain in patients with cerebral tumors. Luchevaya diagnostic i therapiya. 2012; 1 (3): 15–23. (In Russian)
13. Kryachok I.A. A new approach to the treatment of patients with radiation necrosis of the brain. Oncologia. 2010; 12 (3): 261–262. (In Russian)
14. Burger Р.С., Boyko O.B. The pathology of central nervous system radiation injury. Radiation injury to the nervous system. Eds Gutin P.H., Leibel S.A., Sheline G.E. New York: Raven, 1991: 191–208.
15. Castel J.C., Caille J.M. Imaging of irradiated brain tumors: value of magnetic resonance imaging. J. Neuradiol. 1989; 16: 81–132.
16. Sawaya R. The fibrinolytic enzymes in the biology of brain tumors. Sawaya M. D. (ed). Fibrilysis and the central nerv system. Philadelphia, Pa: Harnley and Belfus, 1990: 106–126.
17. Li Y.Q., Chen P., Haimovitz-Friedman A., Reilly R.M., Wong C.S. Endothelial apoptosis initiates acute blood-brain barrier disruption after ionizing radiation. Cancer Res. 2003; 63 (18): 5950–5956.
18. Shishkina L.V. Morbid anatomy complications in neurooncological patients after radiotherapy: Avtoref. diss. … cand. of med. sci. Moscow. 1988. 18 p. (In Russian)
19. Nikitin K.V., Shishkina L.V., Pronin I.N., Ilyalov S.R., Kostyuchenko V.V., Golanov A.V. Radiation necrosis after stereotactic radiosurgery of benign glioma: case report. Voprosi neirokhirurgii im. N.N. Burdenko. 2009; 3: 37–42. (In Russian)
20. Monje M.L., Toda H., Palmer T.D. Inflammatory blockade restores adult hippocampal neurogenesis. Science. 2003; 302 (5651): 1760–1765. DOI: 10.1126/science.1088417.
21. Wilson C.M., Gaber M.W., Sabek O.M., Zawaski J.A., Merchant T.E. Radiation- induced astrogliosis and bloodbrain barrier damage can be abrogated using anti-TNF treatment. Int. J. Radiat. Oncol. Biol. Phys. 2009; 74 (3): 934–941. DOI: 10.1016/j.ijrobp.2009.02.035.
22. Zhou H., Liu Z., Liu J., Zhou D., Zhao Z., Xiao S., Tao E., Suo W.Z. Fractionated radiation-induced acute encephalopathy in a young rat model: cognitive dysfunction and histologic findings. Am. J .Neuroradiol. 2011; 32 (10): 1795–1800. DOI: 10.3174/ajnr.A2643.
23. Safdari Н., Fuentes J.M. Dubois J.B., Alirezai M., Castan P., Vlahovitch B. Radiation necrosis of the brain: Time of onset and incidence related to total dose and fractionation of radiation. Neuroradiology. 1985; 27: 44–47.
24. Lee A.W.M., Law S.C.K., Ng S.H., Chan D.K., Poon Y.F., Foo W., Tung S.Y., Cheung F.K., Ho J.H. Retrospective analysis of nasopharyngeal carcinoma treated during 1976-1985: late complications following megavoltage irradiation. Br. J. Radiol. 1992; 65: 918–928. DOI: 10.1259/0007-1285-65-778-918.
25. Chong V.F., Fan Y.F., Mukherji K.S. Radiation-Induced Temporal Lobe Changes: CT and MR Imaging Characteristics. Am. J. Roentgenol. 2000; 175: 431–436. DOI: 10.2214/ajr.175.2.1750431.
26. Lee A.W., Foo W., Chappell R., Fowler J.F., Sze W.M., Poon Y.F., Law S.C., Ng S.H., O S.K., Tung S.Y., Lau W.H., Ho J.H. Effect of time, dose, and fractionation on temporal lobe necrosis following radiotherapy for nasopharyngeal carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 1998; 40: 35–42.
27. Tandon N., Vollmer D., New P., Hevezi J.M., Herman T., Kagan-Hallet K., West G.A. Fulminant radiation-induced necrosis after stereotactic radiation therapy to the posterior fossa. Case report and review of the literature. J. Neurosurg. 2001; 95: 507–512. DOI: 10.3171/jns.2001.95.3.0507.
28. Chin L.S., Ma L., DiBiase S. Radiation necrosis following gamma knife surgery: a case-controlled comparison of treatment parameters and long-term clinical follow up.J. Neurosurg. 2001; 94: 899–904. DOI: 10.3171/jns.2001.94.6.0899.
29. Chen H., Burnett M., Huse J., Lustig R.A., Bagley L.J., Zager E.L. Recurrent late cerebral necrosis with aggressive characteristics after radiosurgical treatment of an arteriovenous malformation. Casereport J. Neurosurg. 2006; 105: 455–460. DOI: 10.3171/jns.2006.105.3.455.
30. Cheng K.M., Chan C.M., Fu Y.T., Ho L.C., Tsang Y.W., Lee M.K., Cheung Y.L., Law C.K. Brain abscess formation in radiation necrosis of the temporal lobe following radiation therapy for nasopharyngeal carcinoma. Acta Neurochir. (Wien). 2000; 142: 435–440.
31. Cheng K.M., Chan C.M., Fu Y.T., Ho L.C., Cheung F.C., Law C.K. Acute hemorrhage in late radiation necrosis of the temporal lobe: report of five cases and review of the literature. J. Neurooncol. 2001; 51: 143–150.
32. Giglio P., Gilbert M. Cerebral Radiation Necrosis. The Neurologist. 2003; 9: 180–188. DOI: 10.1097/01.nrl.0000080951.78533.c4.
33. Dooms G.C., Hecht S., Brant-Zawadzki M., Berthiaume Y., Norman D., Newton T.H. Brain radiation lesions: MR imaging. Radiology. 1986; 158: 149–155. DOI: 10.1148/radiology.158.1.3940373.
34. Galldiks N., Stoffels G., Filss C., Piroth M.D., Sabel M., Ruge M.I., Herzog H., Shah N.J., Fink G.R., Coenen H.H., Langen K.J. Role of O-(2-18F-Fluoroethyl)-L- Tyrosine PET for Differentiation of Local Recurrent Brain Metastasis from Radiation Necrosis. J. Nuclear Med. 2012; 53 (9): 1367–1374. DOI: 10.2967/jnumed.112.103325.
35. Skvortsova T.Yu., Brodskaya Z.L., SavintsevaZh.I. Modern problems with monitoring of treatment of cerebral gliomas and the possibility of improving the accuracy of diagnosis using PET with [11C]methionine. Luchevaya diagnostica i therapiya. 2014; 2 (5): 5–16. (In Russian)
36. Kreth F.W., Muacevic A., Medele R., Bise K., Meyer T., Reulen H.J. The risk of haemorrhage after image guided stereotactic biopsy of intra-axial brain tumours- a pro spective study. Acta Neurochirurgica. 2001; 143 (6): 539–546.
37. Heper A.O., Erden E., Savas A., Ceyhan K., Erden I., Akyar S., Kanpolat Y. An analysis of stereotactic biopsy of brain tumors and nonneoplastic lesions: a prospective clinicopathologic study. Surg. Neurol. 2005; 30; 64: 82–88. DOI: 10.1016/j.surneu.2005.07.055.
38. Grosu A.L., Astner S.T., Riedel E., Nieder C., Wiedenmann N., Heinemann F., Schwaiger M., Molls M., Wester H.J., Weber W.A. An Interindividual Comparison of O- (2- [18F] Fluoroethyl)-L-Tyrosine (FET)-and L-[Methyl-11C] Methionine (MET)-PET in Patients With Brain Gliomas and Metastases. Int. J. Radiat. Oncol. Biol. Phys. 2011; 81 (4): 1049–1058. DOI: 10.1016/j.ijrobp.2010.07.002.
39. Palumbo B., Buresta T., Nuvoli S., Spanu A., Schillaci O., Fravolini M.L., Palumbo I. SPECT and PET serve as molecular imaging techniques and in Vivo biomarkers for brain metastases. Int. J. Molec. Sci. 2014; 15 (6): 9878– 9893. DOI: 10.3390/ijms15069878.
40. Stöber B., Tanase U., Herz M., Seidl C., Schwaiger M., Senekowitsch-Schmidtke R. Differentiation of tumour and inflammation: characterisation of [methyl-3H] methionine (MET) and O-(2-[18F] fluoroethyl)-L-tyrosine (FET) uptake in human tumour and inflammatory cells. Eur. J Nucl. Med. Molec. Imaging. 2006; 33 (8): 932–939. DOI: 10.1007/s00259-005-0047-5.
41. Hanakawa K., Ikeda H., Ishii K., Asamoto S., Iwata T., Matsumoto K. High uptake on 11C methionine PET scan in the pituitary gland of a patient with cerebral glioma after surgical abortion. No To Shinkei. 1998; 50 (6): 573–577.
42. Positronemission tomography: a guide for physicians. Eds A.M. Granov, L.A. Tyutin. M.: Foliant., 2008. 610 p. (In Russian)
43. Kartashev A.V., Vinogradov V.M., Kiseleva L.N. Malignant gliomas of the brain. Lambert Academic Publishing. 2011; 166–168. (In Russian)
44. Pöpperl G., Götz C., Rachinger W., Gildehaus F.J., Tonn J.C., Tatsch K.Value of O-(2-[18F] fluoroethyl)- L-tyrosine PET for the diagnosis of recurrent glioma. Eur. J. Nucl. Med. Molec. Imaging. 2004; 31 (11): 1464–1470. DOI: 10.1007/s00259-004-1590-1.
45. Langen K.J., Hamacher K., Weckesser M., Floeth F., Stoffels G., Bauer D., Coenen H.H., Pauleit D. O-(2-[18F] fluoroethyl)-L-tyrosine: uptake mechanisms and clinical applications. Nucl. Med. Biol. 2006; 33 (3): 287–294. DOI: 10.1016/j.nucmedbio.2006.01.002.
46. Jensen M.L. Image Analysis of FET PET scans performed during Chemo-Radiotherapy of Glioblastoma Multiforme. DTU Informatics. 2012: 8–14.
47. Juhász C., Dwivedi S., Kamson D.O., Michelhaugh S.K., Mittal S. Comparison of amino acid positron emission tomographic radiotracers for molecular imaging of primary and metastatic brain tumors. Molec. Imaging. 2014; 13 (6): 7290–2014.
48. Pöpperl G., Kreth F.W., Herms J., Koch W., Mehrkens J.H., Gildehaus F.J., Kretzschmar H.A., Tonn J.C., Tatsch K. Analysis of 18F-FET PET for grading of recurrent gliomas: is evaluation of uptake kinetics superior to standard methods? J. Nucl. Med. 2006; 47 (3): 393–403.
49. Piroth M.D., Liebenstund S., Galldiks N., Stoffels G., ShahN. J., EbleM. J., Coenen H.H., Langen K.J. Monitoring of Radiochemotherapy in Patients with Glioblastoma Using O-(2-[18F] Fluoroethyl)-L-Tyrosine Positron Emission Tomography: Is Dynamic Imaging Helpful? Molec. Imaging. 2013; 12 (6): 7290–2013.
50. Di Chiro G., De LaPaz R.L., Brooks R.A., Sokoloff L., Kornblith P.L., Smith B.H., Patronas N.J., Kufta C.V., Kessler R.M., Johnston G.S., Manning R.G., Wolf A.P. Glucose utilization of cerebral gliomas measured by [18F] fluorodeoxyglucose and positron emission tomography. Neurology. 1982; 32 (12): 1323.
51. Bělohlávek O., Šimonová G., Kantorová I., Novotný J. Jr., Liscák R. Brain metastases after stereotactic radiosurgery using the Leksell gamma knife: can FDG PET help to differentiate radionecrosis from tumour progression? Eur. J. Nucl. Med. Molec. Imaging. 2003; 30 (1): 96–100. DOI: 10.1007/s00259-002-1011-2.
52. Lee H.Y., Chung J.K., Jeong J.M., Lee D.S., Kim D.G., Jung H.W., Lee M.C. Comparison of FDG-PET findings of brain metastasis from non-small-cell lung cancer and small-cell lung cancer. Ann. Nucl. Med. 2008 ; 22 (4): 281–286. DOI: 10.1007/s12149-007-0104-1.
53. Trofimova T.N., Trofimov E.A. Modern strategies for radiation diagnosis in primary brain tumors. Practical Oncology. 2013; 14 (3): 141–147. (In Russian)
54. Molecular anatomic imaging: PET-CT and SPECT-CT integrated modality imaging. Ed. Von Schulthess G.K. Lippincott Williams & Wilkins, 2007: 150–152.
55. Hutterer M., Nowosielski M., Putzer D., Jansen N.L., Seiz M., Schocke M., McCoy M., Göbel G., laFougère C., Virgolini I.J., Trinka E., Jacobs A.H., Stockham mer G. [18F]-fluoro-ethyl-L-tyrosine PET: a valuable diagnostic tool in neuro-oncology, but not all that glitters is glioma. Neurooncology. 2013; 341–351. DOI: 10.1093/neuonc/nos300.
56. Unterrainer M., Schweisthal F., Suchorska B., Wenter V., Schmid-Tannwald C., Fendler W.P., Schüller U., Bartenstein P., Tonn J.C., Albert N.L. Serial 18F-FET PET imaging of primarily 18F-FET-negative glioma – does it make sense? J. Nucl. Med. 2016; 57: 1177–1182. DOI: 10.2967/jnumed.115.171033.
57. Weckesser M., Matheja P., Rickert C., Löttgen J., Palkovic S., Riemann B., Paulus W., Wassmann H., Schober O. Evaluation of the extension of cerebral gliomas by scintigraphy. Strahlenther. Onkol. 2000; 176 (4): 180–185.
58. del Amo E.M., Urtti A., Yliperttula M. Pharmacokinetic role of L-type amino acid transporters LAT1 and LAT2. Eur. J. Pharmaceut. Sci. 2008; 35 (3): 161–174. DOI: 10.1016/j.ejps.2008.06.015.
Review
For citations:
Lyuosev A.S., Dolgushin M.B., Pronin A.I., Nazarenko A.V., Meshcheriakova N.A., Nevzorov D.I., Alieva S.B. PET/CT with 18F-Fluoroethyl-L-Tyrosine in Diagnosis of Radiation Necrosis of the Temporal Lobe after Radiotherapy for Nasopharyngeal Carcinoma (Clinical Case). Medical Visualization. 2017;(5):18-28. (In Russ.) https://doi.org/10.24835/1607-0763-2017-5-18-28