Preview

Medical Visualization

Advanced search

Simultaneous Magnetic Resonance Angiography of Aorta, Coronary and Internal Mammary Arteries for Three-Dimensional Anatomic Design in the Low-Invasive Mammaro-Coronary Bypass Surgery

Abstract

Backgrond. Efficiency of low-invasive angiosurgical revascularisation techniques essentially depends on precise and individualised anatomic localization of arteries involved to the procedure. In particular when carrying out the lowinvasive mammarocoronary bypass surgery this means the optimal selection of intercostal anatomic approach adjusted to real position of internal thoracic and coronary arteries. Nevertheless the real possibilities of use of the MRI simultaneously with MR-angiography (MRA) for 3D pre-surgical design and personalization of surgical technique in every personal case according to real anatomic relation of coronary and internal thoracic arteries remain underemployed. Both the feasibilities and long-term results of individual virtual design of mammarocoronary bypass surgery based on routine chest MRI and MRA data are not yet studied, and the real efficiency of such approach remains unclear.

Aim: comprised first the development of a technique of 3D virtual anatomic design of mammarocoronary bypass surgery basing on the data of simultaneous ssfp-MRA imaging of coronary and internal mammary arteries and on set of chest MRI tomographic images, in order to improve the results of mammarocoronary mini-invasive transthoracic technique of bypass; and second, the technique was briefly evaluated from the one-year follow-up clinical results.

Material and Methods. The patient’s material comprised overall 23 persons who were assigned to two groups – first the fourteen (61%) patients of the main group, in whom the low-invasive mammarocoronary bypass surgeru was carried out; and the nine patients (39%) of the comparison group, recruited from earlier cases, in whom the surgical intervention was performed without evaluation of chest MR-angiographic data. The MRI and MR-angiography, later employed for threedimensional quantification of inter-position of heart surface, of anterior descendent coronary artery, of internal mammary artery, of bone, chet wall muscular and catilage structures, comprised chest breath- and ECG-synchronized MRI with detailed imaging of anterior chest wall, intercostal spaces and internal mammary artery, imaging of the heart itself using two- and four-chamber long-axis positions, and pan-angiography of chest aorta and major arteries, including coronary arteries and internal thoracic arteries. The slices were 4–7 mm thin, acquired to matrix 256 × 256 or 256 × 392 voxels, with field of view as big as 30 × 40 cm. From the 3D model of thoracic and coronary arteries the optimal surgical technique was designed in every clinical case basing on critrion of minimal distance between internal thoracic artey and antrior descending artery as rationale for selection of intercostal level for endoscope introduction and location of aretrio-arterial anastomosis between internal thoracic and coronary arteries.

Results. The possibilities of individual anatomic adjustment based on MR-angiography of thoracic arteries were evaluated in fourteen patients in whom the mammarocoronary shunts were carried out basing on MRA data, delivering no any occlusion of the shunt during 12.5 ± 2.2 mnths follow- up. As a control group nine patients who underwent mammarocoronay bypass surgery without pre-operational MRI anatomic simulation were employed, in whom in two of nine occlusion of the shunt occured. The anatomic extent of isolation of internal mammary artery was in the group of patients in whom the 3D MRI-based design of surgey was employed as long as 20–35 mm, in average 29 ± 6 mm, whereas in patients without 3D anatomic simulation and design it was over 30 mm in all cases.

Conclusion. Thus, the use of simultaneous MRA imaging of coronary and internal mammary arteries significantly improved both technique of mammarocoronary bypassing itself and provided no cases of shunt occlusion during the one-year folow-up.

About the Authors

V. Yu. Usov
Tomsk Institute of Cardiology of the Tomsk National Medical Research Institution of the Russian Academy of Sciences
Russian Federation

doct. of med. sci., professor, chairman of the department of X-ray and tomographic methods of the Institute of Cardiology of Tomsk National research medical Center of the Russian Academy of Sciences, Tomsk

634012 Tomsk 12, Kievskaya str., 111, Institute of Cardiology of the Tomsk National research medical Center of the Russian Academy of Sciences, Department of X-ray and tomographic methods. Phone +7-903-951-26-76



I. M. Skurikhin
Tomsk Institute of Cardiology of the Tomsk National Medical Research Institution of the Russian Academy of Sciences
Russian Federation

PhD student of the cardiovascular surgery department of the Institute of Cardiology of Tomsk National research medical Center of the Russian Academy of Sciences, Tomsk



P. I. Lukyanenok
Tomsk Institute of Cardiology of the Tomsk National Medical Research Institution of the Russian Academy of Sciences
Russian Federation

doct. of med. sci., professor, leader research fellow of the department of X-ray and tomographic methods of the Institute of Cardiology of Tomsk National research medical Center of the Russian Academy of Sciences, Tomsk



Yu. Yu. Vechersky
Tomsk Institute of Cardiology of the Tomsk National Medical Research Institution of the Russian Academy of Sciences
Russian Federation

doct. of med. sci., professor, leader research fellow cardiovascular surgery department of the Institute of Cardiology of Tomsk National research medical Center of the Russian Academy of Sciences, Tomsk



T. A. Bakhmetyeva
Janssen Pharmaceutica
Russian Federation

Senior medical representative, Janssen Pharmaceutical, Moscow



T. A. Shelkovnikova
Tomsk Institute of Cardiology of the Tomsk National Medical Research Institution of the Russian Academy of Sciences
Russian Federation

cand. of med. sci., Senior research fellow of the department of X-ray and tomographic methods of the Institute of Cardiology of Tomsk National research medical Center of the Russian Academy of Sciences, Tomsk



Yu. P. Usov
National Research Tomsk Polytechnic University
Russian Federation

doct. of tekh. sci., professor of the department of theoretical bases of electrotechnics of the National research of Tomsk Polytechnic university, Tomsk



A. A. Shelupanov
Tomsk State University of control systems and radioelectronics
Russian Federation

doct. of tekh. sci., professor, chairman of the department of the complex information safety of the electronic digital systems of the Tomsk State university of control systems and radioelectronics (TUSUR), Rector of the TUSUR University, Tomsk



O. I. Belichenko
P.F. Lesgaft Russian National university of atheltics, sport, youth and turism
Russian Federation

doct. of med. sci., Professor of the Sport Medicine Department of P.F. Lesgaft Russian state university of physical culture, sport, youth and turism, Moscow



References

1. Архипова И.М., Мершина Е.А., Синицын В.Е. Роль КТ-коронарографии в диагностике ИБС на амбулаторном этапе. Поликлиника. 2013; 12 (3–1): 18–21.

2. Вечерский Ю.Ю., Затолокин В.В., Андреев С.Л. и др. Технические аспекты аутоартериального коронарного шунтирования. Сибирский медицинский журнал (Томск). 2015; 30 (2): 65–68.

3. Demikhov V.P. On methods of blood vessels connection. Trudi I Mosk. Med. Inst. 1958; 6: 36–45.

4. Колесов В.И. Хирургическое лечение коронарной болезни сердца. Л.: Медицина, 1966. 362 c.

5. Kolesov V.I. Mammary artery-coronary artery anastomosis as method of treatment for angina pectoris. J. Thorac. Cardiovasc. Surg. 1967; 54: 535–544.

6. Абрамова Н.Н., Беличенко О.И. Клинический аспект сочетанного применения магнитно-резонансной томо графии головного мозга и магнитно-резонансной ангиографии экстра- и интракраниальных артерий. Терапевтический архив. 1996; 9: 26–31.

7. Беличенко О.И., Абрамова Н.Н., Шария М.А., Сергиенко И.В. Магнитно-резонансная томография и ангиография в оценке состояния почечных артерий и почек у пациентов с реноваскулярной гипертензией. Медицинская радиология и радиационная безопасность. 1997; 42 (2): 42-46.

8. Федоров В.Д., Кармазановский Г.Г., Цвиркун В.В. и др. Виртуальные хирургические операции на основе использования спиральной компьютерной томографии. Хирургия. Журнал им. Н.И. Пирогова. 2003; 94 (2): 3–11.

9. Челнокова Н.О., Островский Н.В., Голядкина А.А. и др Компьютерное 3Д пространственно-ориентированное моделирование гемодинамики венечных артерий при их атеросклеротическом поражении и реконструктивных вмешательствах. Вопросы реконструктивной и пластической хирургии. 2015; 18 (1): 64–74.

10. Бобрикова Е.Э. Контрастирование коронарных атеросклеротических поражений при МРТ-исследовании сердца. Медицинская визуализация. 2013; 19 (3): 21–27.


Review

For citations:


Usov V.Yu., Skurikhin I.M., Lukyanenok P.I., Vechersky Yu.Yu., Bakhmetyeva T.A., Shelkovnikova T.A., Usov Yu.P., Shelupanov A.A., Belichenko O.I. Simultaneous Magnetic Resonance Angiography of Aorta, Coronary and Internal Mammary Arteries for Three-Dimensional Anatomic Design in the Low-Invasive Mammaro-Coronary Bypass Surgery. Medical Visualization. 2016;(6):93-99. (In Russ.)

Views: 1452


ISSN 1607-0763 (Print)
ISSN 2408-9516 (Online)