Preview

Медицинская визуализация

Расширенный поиск

ПЭТ/КТ с 18F-ФЭТ в дифференциальной диагностике рецидивов и постлучевых изменений при метастатическом поражении головного мозга

Аннотация

Цель исследования: оценка возможностей ПЭТ/КТ с 18F-ФЭТ в дифференциальной диагностике рецидивов от постлучевых изменений у больных с метастатическим поражением головного мозга после стереотаксической радиохирургии (СРХ).

Материал и методы. В исследование были включены результаты ПЭТ/КТ с 18F-ФЭТ и МРТ-исследований 23 пациентов с метастазами в головном мозге опухолей различной первичной локализации после проведенной СРХ на аппарате Гамма-нож. Количество патологических очагов, в которых были измерены количественные показатели, составило 48. Всем пациентам была выполнена трехэтапная ПЭТ/КТ с 18F-ФЭТ и минимум два МР-исследования в динамике. ПЭТ/КТ была выполнена в три этапа: первый – сразу после внутривенного введения 18F-ФЭТ, второй и третий этапы через 10 и 40 мин от момента введения соответственно. Данные оценивались визуально и с подсчетом показателей maxSUV1,2,3 и TBR1,2,3 соответственно трем этапам.

Результаты. Накопление РФП в патологических очагах в подавляющем большинстве случаев (98%) характеризовалось более высокими значениями maxSUV1,2,3 относительно непораженного вещества головного мозга и только в одном случае накопление не превышало фоновое. Средние значения TBR1,2,3 были выше при рецидивах метастазов, чем при изменениях смешанного характера и лучевом некрозе. Определена значимость первого этапа сканирования с вычислением TBR1 – при рецидиве значения превышали 2,0, при смешанных изменениях и некрозе значения были ниже 2,0. Дополнительную информацию дает графический анализ динамики TBR1,2,3, который также позволяет дифференцировать смешанные изменения и постлучевой некроз по вектору кривой.

Заключение. Комплексный анализ значения TBR1 и типа кривой является более точным критерием, чем одиночный анализ maxSUV1,2,3 в патологическом участке. В случае выявления рецидива возможно определение наиболее активного участка, что играет важную роль при планировании проведения повторной СРХ. Выявление смешанного характера изменений имеет прогностический характер и в большинстве случаев подразумевает динамический контроль.

Об авторах

А. С. Люосев
ФГБУ “Российский онкологический научный центр им. Н.Н. Блохина” Минздрава России
Россия

научный сотрудник отделения позитронной эмиссионной томографии НИИ КиЭР ФГБУ “Российский онкологический научный центр им. Н.Н. Блохина” МЗ РФ, Москва

115478 Москва, Каширское шоссе, д. 23. Отделение позитронной эмиссионной томографии НИИ КиЭР ФГБУ “Российский онкологический научный центр им. Н.Н. Блохина”. Тел.: +7-909-626-82-81



М. Б. Долгушин
ФГБУ “Российский онкологический научный центр им. Н.Н. Блохина” Минздрава России
Россия

доктор мед. наук, профессор, заведующий отделением позитронной эмиссионной томографии НИИ КиЭР ФГБУ “Российский онкологический научный центр им. Н.Н. Блохина” МЗ РФ, Москва



А. И. Пронин
ФГБУ “Российский онкологический научный центр им. Н.Н. Блохина” Минздрава России
Россия

научный сотрудник отделения позитронной эмиссионной томографии НИИ КиЭР ФГБУ “Российский онкологический научный центр им. Н.Н. Блохина” МЗ РФ, Москва



А. А. Оджарова
ФГБУ “Российский онкологический научный центр им. Н.Н. Блохина” Минздрава России
Россия

канд. мед. наук, старший научный сотрудник отделения позитронной эмиссионной томографии НИИ КиЭР ФГБУ “Российский онкологический научный центр им. Н.Н. Блохина” МЗ РФ, Москва



А. И. Михайлов
ФГБУ “Российский онкологический научный центр им. Н.Н. Блохина” Минздрава России
Россия

врач отделения позитронной эмиссионной томографии НИИ КиЭР ФГБУ “Российский онкологический научный центр им. Н.Н. Блохина” МЗ РФ, Москва



А. Х. Бекяшев
ФГБУ “Российский онкологический научный центр им. Н.Н. Блохина” Минздрава России
Россия

доктор мед. наук, профессор, заведующий отделением нейрохирургии НИИ КО ФГБУ “Российский онкологический научный центр им. Н.Н. Блохина” МЗ РФ, Москва



Д. И. Невзоров
ФГБУ “Российский онкологический научный центр им. Н.Н. Блохина” Минздрава России
Россия

инженер-радиохимик отделения позитронной эмиссионной томографии НИИ КиЭР ФГБУ “Российский онкологический научный центр им. Н.Н. Блохина” МЗ РФ, Москва



Э. А. Нечипай
ФГБУ “Российский онкологический научный центр им. Н.Н. Блохина” Минздрава России
Россия

врач рентгено-диагностического отделения НИИ КиЭР ФГБУ “Российский онкологический научный центр им. Н.Н. Блохина” МЗ РФ, Москва



С. Р. Ильялов
Центр стереотаксической радиохирургии Гамма-Нож ФГАУ “НИИ нейрохирургии им. акад. Н.Н. Бурденко” Минздрава России
Россия

канд. мед. наук, врач Центра стереотаксической радиохирургии Гамма-Нож ФГАУ “НИИ нейрохирургии им. акад. Н.Н. Бурденко” МЗ РФ, Москва



Список литературы

1. Gagliardi F.M., Mercuri S. Single metastases in the brain: late results in 325 cases. Acta Neurochirurg. 1983; 68 (3–4): 253–262.

2. Oneschuk D., Bruera E. Palliative management of brain metastases. Supportive care in cancer. 1998; 6 (4): 365– 372.

3. Soffietti R., Ruda R., Mutani R. Management of brain metastases. J. Neurol. 2002; 249 (10): 1357–1369.

4. Мельникова Е.А. Метастазы опухолей в головной мозг. Нейрохирургия. 2005; 3: 61–65. Melnikova E.A. The metastatic tumors in the brain. Neurokhirurgiya. 2005; 3: 61–65. (In Russian)

5. Vecht C.J. Clinical management of brain metastasis. J. Neurol. 1998; 245 (3): 127–131.

6. Голанов А.В., Банов С.М., Ветлова Е.Р. и др. Радиохирургическое лечение метастазов в головной мозг. Результаты одноцентрового ретроспективного исследования. Злокачественные опухоли. 2015; 4 (спец. выпуск. 2): 58–65. Golanov A.V., Banov S.M., Vetlova E.R. et al. Radiosurgical treatment of brain metastases. The results of a singlecenter retrospective study. Zlokachestvennie opukholi 2015; 4 (Special Issue 2): 58–65. (In Russian)

7. Suh J.H. Stereotactic radiosurgery for the management of brain metastases. New Engl. J. Med. 2010; 362 (12): 1119–1127.

8. Kano H., Kondziolka D., Lobato-Polo J. et al. T1/T2 matching to differentiate tumor growth from radiation effect safter stereotactic radiosurgery. Neurosurgery. 2010; 66 (3): 486–492.

9. Dooms G.C., Hecht S., Brant-Zawadzki M. et al. Brain radiation lesions: MR imaging. Radiology. 1986; 158 (1): 149–155.

10. Galldiks N., Stoffels G., Filss C.P. et al. Role of O-(2-(18) F-fluoroethyl)-L-tyrosine PET for differentiation of local recurrent brain metastasis from radiation necrosis. J. Nucl. Med. 2012; 53 (9): 1367–1374.

11. Davis P.C., Hudgins P.A., Peterman S.B. et al. Diagnosis of cerebral metastases: double- dose delayed CT vs contrastenhanced MR imaging. Am. J. Neuroradiol. 1991; 12 (2): 293–300.

12. Schellinger P.D., Meinck H.M., Thron A. Diagnostic accuracy of MRI compared to CCT in patients with brain metastases. J. Neurooncol. 1999; 44 (3): 275–281.

13. Palumbo B. Brain tumour recurrence: brain single-photon emission computerized tomography, PET and proton magnetic resonance spectroscopy. Nucl. Med. Communications. 2008; 29 (8): 730–735.

14. Kickingereder P., Dorn F., Blau T. et al. Differentiation of local tumor recurrence from radiation-induced changes after stereotactic radiosurgery for treatment of brain metastasis: case report and review of the literature. Radiat. Oncol. 2013; 8 (1): 1–8.

15. Galldiks N., Stoffels G., Ruge M.I. et al. Role of O-(2-(18) F-fluoroethyl)-L-tyrosine PET as a diagnostic tool for detection of malignant progression in patients with lowgrade glioma. J. Nucl. Med. 2013; 54 (12): 2046–2054.

16. Palumbo B., Buresta T., Nuvoli S. et al. SPECT and PET serve as molecular imaging techniques and in Vivo biomarkers for brain metastases. Int. J. Molec. Sci. 2014; 15 (6): 9878–9893.

17. Singhal T., Narayanan T.K., Jain V. et al. 11C-L-methionine positron emission tomography in the clinical management of cerebral gliomas. Molec. Imaging Biol. 2008; 10 (1): 1–8.

18. Gulyas B., Halldin C. New PET radiopharmaceuticals beyond FDG for brain tumor imaging. The quarterly journal of nuclear medicine and molecular imaging: official publication of the Italian Association of Nuclear Medicine (AIMN) [and] the International Association of Radiopharmacology (IAR), [and] Section of the Society of... 2012; 56 (2): 173–190.

19. Позитронная эмиссионная томография: руководство для врачей: Под ред. А.М. Гранова, Л.А. Тютина. СПб.: Фолиант, 2008. 610 с. Positron emission tomography: a guide for physicians. Eds A.M. Granov, L.A. Tyutin. SPb.: Foliant, 2008. 610 p. (In Russian)

20. Tsuyuguchi N., Sunada I., Iwai Y. et al. Methionine positron emission tomography of recurrent metastatic brain tumor and radiation necrosis after stereotactic radiosurgery: is a differential diagnosis possible? J. Neurosurg. 2003; 98 (5): 1056–1064.

21. Terakawa Y., Tsuyuguchi N., Iwai Y. et al. Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J. Nuc. Med. 2008; 49 (5): 694–699.

22. Grosu A.L., Astner S.T., Riedel E. et al. An Interindividual Comparison of O-(2-[18F] Fluoroethyl)-L-Tyrosine (FET)– and L-[Methyl-11C] Methionine (MET)–PET in Patients With Brain Gliomas and Metastases. Int. J. Radiat. Oncol. Biol. Phys. 2011; 81 (4): 1049–1058.

23. Ильялов С.Р. Стереотаксическая радиохирургия внутримозговых метастазов рака с применением установки гамма-нож: Дисс. … канд. мед. наук. М., 2008. 148 c. Ilyalov S.R. Stereotactic radiosurgery of intracranial cancer metastases using gamma knife. Diss. … kand. med. nauk. M., 2015. 148 p. (In Russian)

24. Narang J., Jain R., Arbab A.S. et al. Differentiating treatment-induced necrosis from recurrent/progressive brain tumor using nonmodel-based semiquantitative indices derived from dynamic contrast-enhanced T1-weighted MR perfusion. Neurooncology. 2011; 29: nor075.

25. Patel T.R., McHugh B.J., Bi W.L. et al. A comprehensive review of MR imaging changes following radiosurgery to 500 brain metastases. Am. J. .Neuroradiol. 2011; 32 (10): 1885–1892.

26. Shah R., Vattoth S., Jacob R. et al. Radiation necrosis in the brain: imaging features and differentiation from tumor recurrence. Radiographics. 2012; 32 (5): 1343–1359.

27. Verma N., Cowperthwaite M.C., Burnett M.G. et al. Differentiating tumor recurrence from treatment necrosis: a review of neuro-oncologic imaging strategies. Neurooncology. 2013; 16: nos307.

28. Ruzevick J., Kleinberg L., Rigamonti D. Imaging changes following stereotactic radiosurgery for metastatic intracranial tumors: differentiating pseudoprogression from tumor progression and its effect on clinical practice. Neurosurg. Rev. 2014; 37 (2): 193–201.

29. Насхлеташвили Д.Р., Абсалямова О.В., Алешин В.А. и др. Практические рекомендации по лекарственному лечению метастатических опухолей головного мозга. Злокачественные опухоли. 2015; 4 (спец. выпуск 2): 80–98. Nashletashvili D.R., Absalyamova O.V., Aleshin V.A. et al. Practical recommendations for drug treatment of metastatic brain tumors. Zlokachestvennie opukholi. 2015; 4 (Special Issue 2): 80–98. (In Russian)

30. Журавлева М.А. Возможности перфузионной КТ в оценке эффективности комбинированного лечения глиальных опухолей головного мозга: Дисс. … канд. мед. наук. СПб., 2015. 182 с. Zhuravleva M.A. Possibilities of perfusion CT in the evaluation of the effectiveness of the combined treatment of glial brain tumors: Diss. … kand. med. nauk. Spb. 2015. 182 p. (In Russian)

31. Peterson A.M., Meltzer C.C., Evanson E.J. et al. MR Imaging Response of Brain Metastases after Gamma Knife Stereotactic Radiosurgery 1. Radiology. 1999; 211 (3): 807–814.

32. Shaw E., Scott C., Souhami L. et al. Single dose radiosurgical treatment of recurrent previously irradiated primary brain tumors and brain metastases: final report of RTOG protocol 90-05. Int. J. Radiat. Oncol. Biol. Phys. 2000; 47 (2): 291–298.

33. Ross D.A., Sandler H.M., Balter J.M. et al. Imaging changes after stereotactic radiosurgery of primary and secondary malignant brain tumors. J. Neurooncol. 2002; 56 (2): 175–181.

34. Kreth F.W., Muacevic A., Medele R. et al. The risk of haemorrhage after image guided stereotactic biopsy of intra-axial brain tumours – a prospective study. Acta Neurochir. 2001; 143 (6): 539–546.

35. Heper A.O., Erden E., Savas A. et al. An analysis of stereotactic biopsy of brain tumors and nonneoplastic lesions: a prospective clinicopathologic study. Surg. Neurol. 2005; 64: S82–S88.

36. Di Chiro G., DeLaPaz R.L., Brooks R.A. et al. Glucose utilization of cerebral gliomas measured by [18F] fluorodeoxyglucose and positron emission tomography. Neurology. 1982; 32 (12): 1323.

37. Bělohlávek O., Šimonová G., Kantorová I. et al. Brain metastases after stereotactic radiosurgery using the Leksell gamma knife: can FDG PET help to differentiate radionecrosis from tumour progression? Eur. J. Nucl. Med. Molecul. Imaging. 2003; 30 (1): 96–100.

38. Lee H.Y., Chung J.K., Jeong J.M. et al. Comparison of FDG-PET findings of brain metastasis from non-small-cell lung cancer and small-cell lung cancer. Ann. Nucl. Med. 2008; 22 (4): 281–286.

39. Савинцева Ж.И., Скворцова Т.Ю., Бродская З.Л. Современные методы нейровизуализации в дифференциальной диагностике лучевых поражений головного мозга у больных с церебральными опухолями. Лучевая диагностика и терапия. 2012; 1 (3): 15–23. Savintseva Zh.I., Skvortsova T.Yu., Brodskaya Z.L. Modern neuroimaging techniques in the differential diagnosis of radiation injuries of the brain in patients with cerebral tumors. Luchevaya diagnostikas i terapiya. 2012; 1 (3): 15–23. (In Russian)

40. Трофимова Т.Н., Трофимов Е.А. Современные стратегии лучевой диагностики при первичных опухолях головного мозга. Практическая онкология. 2013; 14 (3): 141–147. Trofimova T.N., Trofimov E.A. Modern strategies for radiation diagnosis in primary brain tumors. Practicheskaya Oncologiya. 2013; 14 (3): 141–147. (In Russian)

41. von Schulthess G.K., ed. Molecular anatomic imaging: PET-CT and SPECT-CT integrated modality imaging. Lippincott Williams & Wilkins, 2007: 150–152.

42. Hutterer M., Nowosielski M., Putzer D. et al. [18F]-fluoroethyl-L-tyrosine PET: a valuable diagnostic tool in neurooncology, but not all that glitters is glioma. Neurooncology. 2013; 341–351.

43. Unterrainer M., Schweisthal F., Suchorska B. et al. Serial 18F-FET PET imaging of primarily 18F-FET-negative glioma–does it make sense? J. Nucl. Med. 2016: jnumed-115.

44. Wyss M., Hofer S., Bruehlmeier M. et al. Early metabolic responses in temozolomide treated low-grade glioma patients. J. Neurooncol. 2009; 95 (1): 87–93.

45. Piroth M.D., Pinkawa M., Holy R. et al. Integrated-boost IMRT or 3-D-CRT using FET-PET based auto-contoured target volume delineation for glioblastoma multiforme-a dosimetric comparison. Radiat. Oncol. 2009; 23; 4 (1):1.

46. Niyazi M., Geisler J., Siefert A. et al. FET–PET for malignant glioma treatment planning. Radiother. Oncol. 2011; 99 (1): 44–48.

47. Heiss P., Mayer S., Herz M. et al. Investigation of transport mechanism and uptake kinetics of O-(2-[18F] fluoroethyl)- L-tyrosine in vitro and in vivo. J. Nucl. Med. 1999; 40 (8): 1367–1373.

48. Langen K.J., Jarosch M., Mühlensiepen H. et al. Comparison of fluorotyrosines and methionine uptake in F98 rat gliomas. Nucl. Med. Biol. 2003; 30 (5): 501– 508.

49. Langen K.J., Hamacher K., Weckesser M. et al. O-(2-[18F] fluoroethyl)-L-tyrosine: uptake mechanisms and clinical applications. Nucl. Med. Biol. 2006; 33 (3): 287– 294.

50. del Amo E.M., Urtti A., Yliperttula M. Pharmacokinetic role of L-type amino acid transporters LAT1 and LAT2. Еur. J. Pharmaceut. Sci. 2008; 35 (3): 161–174.

51. Jensen M.L. Image Analysis of FET PET scans performed during Chemo-Radiotherapy of Glioblastoma Multiforme. Faculty of health sciences university of Copenhagen. 2012: 8–14.

52. Juhász C., Dwivedi S., Kamson D.O. et al. Comparison of amino acid positron emission tomographic radiotracers for molecular imaging of primary and metastatic brain tumors. Molec. Imaging. 2014; 13 (6): 7290–2014.

53. Stöber B., Tanase U., Herz M. et al. Differentiation of tumour and inflammation: characterisation of [methyl-3H] methionine (MET) and O-(2-[18F] fluoroethyl)-L-tyrosine (FET) uptake in human tumour and inflammatory cells. Eur. J. Nucl. Med. Molec. Imaging. 2006; 33 (8): 932–939.

54. Floeth F.W., Sabel M., Stoffels G. et al. Prognostic value of 18F-fluoroethyl-L-tyrosine PET and MRI in small nonspecific incidental brain lesions. J. Nucl. Med. 2008; 49 (5): 730–737.

55. Tonn J.C., Westphal M., Rutka J.T. (eds.). Oncology of CNS tumors. Springer Science & Business Media. 2010; 20: 345–361.

56. Pöpperl G., Götz C., Rachinger W. et al. Value of O-(2-[18F] fluoroethyl)-L-tyrosine PET for the diagnosis of recurrent glioma. Eur. J. Nucl. Med. Molec. Imaging. 2004; 31 (11): 1464–1470.

57. Pichler R., Dunzinger A., Wurm G. et al. Is there a place for FET PET in the initial evaluation of brain lesions with unknown significance? Eur. J. Nucl. Med. Molec. Imaging. 2010; 37 (8): 1521–1528.

58. Weckesser M., Langen K.J., Rickert C.H. et al. O-(2-[18F] fluorethyl)-L-tyrosine PET in the clinical evaluation of primary brain tumours. Eur. J. Nucl. Med. Molec. Imaging. 2005; 32 (4): 422–429.

59. Pöpperl G., Kreth F.W., Herms J. et al. Analysis of 18F-FET PET for grading of recurrent gliomas: is evaluation of uptake kinetics superior to standard methods? J. Nucl. Med. 2006; 47 (3): 393–403.

60. Pöpperl G., Kreth F.W., Mehrkens J.H. et al. FET PET for the evaluation of untreated gliomas: correlation of FET uptake and uptake kinetics with tumour grading. Eur. J. Nucl. Med. Molec. Imaging. 2007; 34 (12): 1933–1942.

61. Kunz M., Thon N., Eigenbrod S. et al. Hot spots in dynamic18FET-PET delineate malignant tumor parts within suspected WHO grade II gliomas. Neurooncology. 2011; 13 (3): 307–316.

62. Calcagni M.L., Galli G., Giordano A. et al. Dynamic O-(2-[18F] fluoroethyl)-L-tyrosine (F-18 FET) PET for glioma grading: assessment of individual probability of malignancy. Clin. Nucl. Med. 2011; 36 (10): 841–847.

63. Piroth M.D., Liebenstund S., Galldiks N. et al. Monitoring of Radiochemotherapy in Patients with Glioblastoma Using O-(2-[18F] Fluoroethyl)-L-Tyrosine Positron Emission Tomography: Is Dynamic Imaging Helpful? Molec. Imaging. 2013; 12 (6): 7290–2013.

64. Pyka T., Gempt J., Ringel F. et al. Prediction of glioma recurrence using dynamic 18F- fluoroethyltyrosine PET. Am. J. Neuroradiol. 2014; 35 (10): 1924–1929.


Рецензия

Для цитирования:


Люосев А.С., Долгушин М.Б., Пронин А.И., Оджарова А.А., Михайлов А.И., Бекяшев А.Х., Невзоров Д.И., Нечипай Э.А., Ильялов С.Р. ПЭТ/КТ с 18F-ФЭТ в дифференциальной диагностике рецидивов и постлучевых изменений при метастатическом поражении головного мозга. Медицинская визуализация. 2016;(6):15-25.

For citation:


Lyuosev A.S., Dolgushin M.B., Pronin A.I., Odzharova A.A., Mikhailov A.I., Bekyashev A.Kh., Nevzorov D.I., Nechipai E.A., Ilyalov S.R. PET/CT with 18F-FET in Differential Diagnosis of Recurrence and Post-Radiation Changes in Metastatic Brain Lesions. Medical Visualization. 2016;(6):15-25. (In Russ.)

Просмотров: 1596


ISSN 1607-0763 (Print)
ISSN 2408-9516 (Online)