Evaluation of Demyelination Procesactivity in Patients with Multiple Sclerosis by Magnetization Transfer
Abstract
Purpose: to study the activity of demyelination process in patients with multiple sclerosis using magnetization transfer effect.
Materials and methods. Рatients group of 10 people aged from 19 to 48 years old with a confirmed diagnosis of multiple sclerosis was formed for clinical testing. Contrastcontaining and fat-containing substances scanned with offset frequency used as the material for the phantom studies. MRI investigation was performed on high field magnetic resonance tomograph with 1.5 Tesla magnetic field. To obtain T1-weighted images in the phantom experiment the Spin-Echo pulse sequence with parameters: TR = 650 ms, TE = 20 ms, FOV = 14 cm, MX = 96 × 256, STh = 4.7 mm with the imposition of a single pulse of magnetization transfer (MTS = 1) was used. Magnetization transfer ratio (MTR) was used to quantify the magnetization transfer effect. The Spin-Echo pulse sequence with the following parameters: TR = 621 ms, TE = 17 ms, FOV = 23.4 cm, MX = 208 × 320, STh = 5.0 mm was used in the clinical trial.After the administration of contrast medium the same pulse sequence with applying magnetization transfer pulse (MTC = 1) was used. Contrast ratio was calculated for evaluating the contrasting effect.
Results. The greatest MTR value was obtained when the phantom study with a combination of frequency offset (Δf) and flip angle (FA(MT)): Δf = −210 Hz and FA(MT) = 600° respectively. Clinical approbation of this combination showed a statistically significant increase in contrast ratio (p < 0.05) between the demyelination foci and white brain matter in comparison with the sequence without magnetization transfer effect. In addition significant differences in MTR coefficients revealed between the intact white matter and demyelination foci (p < 0.05). The sensitivity of T1-weighted sequence with the magnetization transfer effect in identification of active foci of demyelination was significantly higher (p < 0.001) than that sensitivity of T1-weighted sequences without the magnetization transfer effect.
Conclusion. The improved visualization of active foci of demyelination in patients with multiple sclerosis using a sequence with magnetization transfer effect with the following parameters: Δf = −210 Hz, FA(MT) = 600° due to the high values of contrast ratio compared with T1-Spin-Echo (p < 0.05) was shown and significant reduction in MTR coefficient in demyelination foci (p < 0.05).
About the Authors
A. A. ErmakovaRussian Federation
intern of the department of radiation diagnosis and radiation therapy of Siberian State Medical University, Tomsk
O. Yu. Borodin
Russian Federation
cand. of med., sci., head of radiology department of Tomsk Regional Oncology Center; Senior Fellow of radiology department of Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences; assistant professor of biophysics and functional diagnostics department of Siberian State Medical University, Tomsk
634063, Russia, Tomsk, I. Chernih str., bld. 96, corp.16. Tomsk regional oncology centerю Phone: +7-3822-90-95-20
A. A. Kolotushkina
Russian Federation
radiologist of radiology department of Tomsk Regional Oncology Center, Tomsk
M. A. Titova
Russian Federation
cand. of med., sci., associate professor of neurology and neurosurgery department of Siberian State Medical University, Tomsk
N. F. Musina
Russian Federation
cand. of med., sci., associate professor of neurology and neurosurgery department of Siberian State Medical University, Tomsk
M. Yu. Sannikov
Russian Federation
radiologist of radiology department of Tomsk Regional Oncology Center, Tomsk
V. Y. Ussov
Russian Federation
doct. of med. sci., professor, head of radiology department of Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk
V. M. Alifirova
Russian Federation
doct. of med. sci., professor, head of neurology and neurosurgery department of Siberian State Medical University, Tomsk
References
1. Rovaris M., Viti B., Ciboddo G. et al. Brain involvement in systemic immune mediated diseases: magnetic resonance and magnetisation transfer imaging study. J. Neurol. Neurosurg. Psychiatr. 2000; 68 (2): 170–177.
2. Гусев Е.И. Рассеянный склероз и другие демиелинизирующие заболевания: Руководство для врачей. M.: Миклош. 2004. 528 с. Gusev E.I. Multiple sclerosis and other demyelinating diseases: a guide for physicians. M.: Miklosh, 2004. 528 p. (In Russian)
3. Filippi M., Rocca M.A., De Stefano N. et al. Magnetic resonance techniques in multiple sclerosis: the present and the future. Arch. Neurol. 2011; 68 (12): 1514–1520.
4. Пахомов А.В. Роль магнитно-резонансной томографии в определении активности патологического процесса у больных рассеянным склерозом: Дисс. …канд. мед. наук. СПб., 2007. 133 с. Pakhomov A.V. The role of magnetic resonance imaging in determining the activity of the disease process in patients with multiple sclerosis: Diss. ... kand. med. nauk. SPb., 2007. 133 p. (In Russian)
5. Miller D., Grossman R., Reingold S. et al. The role of magnetic resonance techniques in understanding and managing multiple sclerosis. Brain. 1998; 121 (1): 3–24.
6. Filippi M., Rocca M.A. Magnetization transfer magnetic resonance imaging of the brain, spinal cord, and optic nerve. Neurotherapeutics. 2007; 4 (3): 401–413.
7. Елизарова С.В., Повереннова И.Е., Луценко С.К. Применение 1,0 М контрастного средства (Гадовист 1,0) в обследовании больных c рассеянным склерозом на магнитно-резонансном томографе Signa 0,5 Tл. Медицинская визуализация. 2006; 1: 140–144. Elizarova S.V., Poverennova I.E., Lutsenko S.K. Application of Gadovist 1.0 M for an examination of patients with multiple sclerosis on “Signa 0.5 T” MRI unit. Meditsinskaya vizualizatsiya. 2006; 1: 140–144. (InRussian)
8. Алиханов А.А., Шимановский Н.Л. Преимущества применения одномолярного гадолиний-содержащего магнитно-резонансного контрастного средства по сравнению с полумолярными препаратами при диагностике рассеянного склероза. Медицинская визуализация. 2008; 5: 73–80. AlikhanovA.A., SzymanowskiN.L. Advantages of 1.0 M Gd Contrast Agent in Comparison with 0.5 M Ones for Diagnosis of Multiple Sclerosis. Meditsinskaya vizuali zatsiya. 2008; 5: 73–80. (In Russian)
9. Paolillo A., Piattella M.C., Pantano P. et al. The relationship between inflammation and atrophy in clinically isolated syndromes suggestive of multiple sclerosis. J. Neurol. 2004; 251 (4): 432–439.
10. Буйлов В.М. Магнитно-резонансные контрастные средства и нефрогенные фиброзирующая дермо патия и системный фиброз (обзор литературы). Медицинская визуализация. 2007; 2: 140–143. Builov V.M. Magnetic Resonance Contrast Agents and Nephrogenic Fibrosing Dermatosis and Systemic Fibrosis (Review Article). Meditsinskaya vizualizatsiya. 2007; 2: 140–143. (In Russian)
11. Stacul F., van der Molen A.J., Reimer P. et al. Contrast induced nephropathy: updated ESUR contrast media safety committee guidelines. Eur. Radiol. 2011; 21 (12): 2527–2541.
12. Пахомов А.В. Сравнительный анализ возможностей методов переноса намагниченности с контрастом и высокодозного контрастирования в определении активности процесса по данным магнитно-резонансной томографии у больных рассеянным склерозом. Профилактическая и клиническая медицина. 2007; 1 (8): 93– 99. Pakhomov A.V. Comparative analysis of the possibilities of magnetization transfer contrast methods with high-dose and contrast in determining the activity of the process according to the magnetic resonance imaging in patients with multiple sclerosis. Profilakticheskaya i klinicheskaya meditsina. 2007; 1 (8): 93–99. (In Russian)
13. Ropele S., Fazekas F. Magnetization transfer MR imaging in multiple sclerosis. Neuroimaging Clin. N. Am. 2009; 19 (1): 27–36.
14. Enzinger C., Barkhof F., Ciccarelli O. et al. Non conventional MRI and microstructural cerebral changes in multiple sclerosis. Nature Reviews Neurol. 2015; 11 (12): 676–686.
15. Alexander A.L., Hurley S.A., Samsonov A.A. et al. Characterization of cerebral white matter properties using quantitative magnetic resonance imaging stains. Brain connectivity. 2011; 1 (6): 423–446.
16. Sled J.G., Pike G.B. Quantitative imaging of magnetization transfer exchange and relaxation properties in vivo using MRI. Magnetic resonance in medicine. 2001; 46 (5): 923–931.
17. Rovira À., León A. MR in the diagnosis and monitoring of multiple sclerosis: an overview. Eur. J. Radiol. 2008; 67 (3): 409–414.
18. Ramani A., Dalton C., Miller D.H. et al. Precise estimate of fundamental in-vivo MT parameters in human brain in clinically feasible times. Magnetic resonance imaging. 2002; 20 (10): 721–731.
19. Yarnykh V.L. Pulsed Z-spectroscopic imaging of crossrelaxation parameters in tissues for human MRI: Theory and clinical applications. Magnetic resonance in medicine. 2002; 47 (5): 929–939.
20. Корниенко В.Н., Пронин И.Н. Диагностическая нейрорадиология. М.: Андреева Т.М., 2006. 1327 с. Kornienko V.N., Pronin I.N. Diagnostic Neuroradiology. М.: Andreeva T.M., 2006. 1327 p. (In Russian)
21. Miller J.R. The importance of early diagnosis of multiple sclerosis. J. Managed Care Pharmacy. 2004; 10 (3): S4.
22. Etemadifar M., Janghorbani M., Koushki M.M. et al. Conversion from radiologically isolated syndrome to multiple sclerosis. International J Preventive Med.2014; 5 (11): 1379.
23. Yarnykh V.L. Fast macromolecular proton fraction mapping from a single off resonance magnetization transfer measurement. Magnetic resonance in medicine. 2012; 68 (1): 166–178.
24. Cercignani M., Symms M.R., Schmierer K. et al. Threedimensional quantitative magnetisation transfer imaging of the human brain. Neuroimage. 2005; 27 (2): 436–441.
25. Boss A., Martirosian P., Küper K. et al. Whole-body magnetization transfer contrast imaging. J. Magnetic Resonance Imaging. 2006; 24 (5): 1183–1187.
Review
For citations:
Ermakova A.A., Borodin O.Yu., Kolotushkina A.A., Titova M.A., Musina N.F., Sannikov M.Yu., Ussov V.Y., Alifirova V.M. Evaluation of Demyelination Procesactivity in Patients with Multiple Sclerosis by Magnetization Transfer. Medical Visualization. 2016;(6):5-14. (In Russ.)