Preview

Medical Visualization

Advanced search

PET/CT witH 18F-FDG and 18F-Choline in the Complex Diagnostics of Disseminated Hepatocellular Cancer in the Patient Seven Years Old (Clinical Case)

Abstract

The rare case of disseminated hepatocellular cancer in 7-year-old male patient has been analyzed using PET/СТ with 18F-choline and 18F-FDG and MRI with intravenous hepatotropic agent (“MultiНance”). Data confirming the presence of metastatic lesions of the left lung and the right lobe of the liver were obtained. Differences in the uptake of 18F-choline and 18F-fluorodeoxyglucose in the metastasis of hepatocellular carcinomahave been detected. PET/CT with 18F-choline showed a high sensitivity in the diagnosis of metastatic highly differentiated hepatocellular carcinoma. PET/CT can be used successfully in the diagnosis of hepatocellular carcinoma in pediatric patients.

About the Authors

P. E. Tulin
N.N. Blokhin Russian Cancer Research Center
Russian Federation

medical doctor of PET department,

115478 Moscow, Kashirskoe shosse, 23



M. B. Dolgushin
N.N. Blokhin Russian Cancer Research Center
Russian Federation

doct. of med. sci., head of PET department,

Moscow



A. A. Odzharova
N.N. Blokhin Russian Cancer Research Center
Russian Federation

cand. of med. sci., medical doctor of PET department,

Moscow



A. I. Mikhailov
N.N. Blokhin Russian Cancer Research Center
Russian Federation

medical doctor of PET department,

Moscow



D. I. Nevzorov
N.N. Blokhin Russian Cancer Research Center
Russian Federation

engineer of PET department,

Moscow



B. M. Medvedeva
N.N. Blokhin Russian Cancer Research Center
Russian Federation

doct. of med. sci., medical doctor,

Moscow



References

1. Kelly D. Hepatocellular Carcinoma in Children. Clin. Liver Disease. 2015; 19 (2): 433–447.

2. Perlmutter D.H. Pathogenesis of chronic liver injury and hepatocellular carcinoma in alpha-1-antitrypsin deficiency. Pediatr. Res. 2006; 60 (2): 233–238.

3. Моногарова Н.Е., Мороз Т.В. Недостаточность альфа-1-антитрипсина. Новости медицины и фармации. 2009; 304: 12–73. Monogarova N.E., Moroz T.V. Deficiency of alpha-1- antitrypsin. Novosti meditsini i pharmatsdii. 2009; 304: 12–73. (In Russian)

4. Labrune P., Trioche P., Duvaltier I. Hepatocellular adenomas in glycogen storage disease type I and III: a series of 43 patients and review of the literature. J. Pediatr. Gastroenterol. Nutr. 1997; 24 (3): 276–279.

5. Chen Y.T., Burchell A. Glycogen storage diseases. Harrison's Principles Intern. Med. 1998: 2176–2182.

6. Weinberg A.G., Mize C.E., Worthen H.G. The occurrence of hepatoma in the chronic form of hereditary tyrosinemia. J. Pediatr. 1976; 88 (3): 434–438.

7. Davit-Spraul A., Gonzales E., Baussan C. Progressive familial intrahepatic cholestasis. Orphanet J. Rare Dis. 2009; 4 (1): 12–24.

8. Reuben A. Hepatocellular carcinoma in adults and children. Clin. Liver Dis. 2015; 19 (2): 8–19.

9. Iwatsuki S., Sheahan D., Yokoyama I. Hepatic resection versus transplantation for hepatocellular carcinoma. Ann. Surg. 1991; 214 (3): 221–228.

10. Ikeda M., Okada S., Ueno H. Radiofrequency ablation and percutaneous ethanol injection in patients with small hepatocellular carcinoma: a comparative study. Jap. J. Clin. Oncol. 2001; 31 (7): 322–326.

11. Tagge E.P., Tagge D.U., Reyes J. Resection, including transplantation, for hepatoblastoma and hepatocellular carcinoma: impact on survival. J. Pediatr. Surg. 2009; 27 (3): 292–297.

12. Zen Y., Vara R., Portmann B. Childhood hepatocellular carcinoma: a clinicopathological study of 12 cases with special reference to EpCAM. Histopathology. 2014; 64 (5): 671–682.

13. Caturelli E. et al. Hemangioma-like lesions in chronic liver disease: diagnostic evaluation in patients 1. Radiology. 2001; 220 (2): 337–342.

14. Matsui O., Kadoya M., Kameyama T. Benign and malignant nodules in cirrhotic livers: distinction based on blood supply. Radiology. 1991; 178 (2): 493–497.

15. Fracanzani A.L., Burdick L., Borzio M. Contrast-enhanced Doppler ultrasonography in the diagnosis of hepatocellular carcinoma and premalignant lesions in patients with cirrhosis. Hepatology. 2001; 34 (6): 1109–1112.

16. Colli A., Fraquelli M., Casazza G. Accuracy of ultrasonography, spiral CT, magnetic resonance, and alphafetoprotein in diagnosing hepatocellular carcinoma: a systematic review. Am. J. Gastroenterol. 2006; 101 (3): 513–523.

17. Wilson S.R., Burns P.N. An algorithm for the diagnosis of focal liver masses using microbubble contrastenhanced pulse-inversion sonography. Am. J. Roentgenol. 2006; 186 (5): 1401–1412.

18. European Association For The Study Of The Liver. EASL–EORTC clinical practice guidelines: management of hepatocellular carcinoma. J. Hepatol. 2012; 56 (4): 908–943.

19. Forner A., Vilana R., Ayuso C. Diagnosis of hepatic nodules 20 mm or smaller in cirrhosis: prospective valida tion of the noninvasive diagnostic criteria for hepatocellular carcinoma. Hepatology. 2008; 47 (1): 97–104.

20. Breedis C., Young G. The blood supply of neoplasms in the liver. Am. J. Pathol. 1954; 30 (5): 969–985.

21. Baron R.L., Nalesnik M., Holbert B.L. Hepatocellular carcinoma: evaluation with biphasic, contrast-enhanced, helical CT. Radiology. 1996; 199 (2): 505–511.

22. Кармазановский Г.Г., Шимановский Н.Л. Диагностическая эффективность нового магнитно-резонансного контрастного средства “Примовист” (гадоксетовая кислота) при выявлении первичных и вторичных опухолей печени. Медицинская визуализация. 2007; 6: 135–143. Karmazanovsky G.G., Shimanovsky N.L. The diagnostic efficacy of a new magnetic resonance contrast agent “Primovist” (gadoxetate acid) in the identification of primary and secondary liver tumors. Meditsinskaya vizualizatsiya. 2007; 6: 135–143. (In Russian)

23. Терновой С.К., Шахиджанова С.В. Магнитно-резонансная томография в диагностике очаговых заболеваний печени (обзор литературы). Медицинская визуализация. 1999; 3: 24–27. Ternovoy S.K., Shahidzhanova S.V. Magnetic-resonance imaging in the diagnosis of focal liver disease (review). Meditsinskaya vizualizatsiya. 1999; 4: 14–23. (In Russian)

24. Лукьянченко А.Б., Медведева Б.М. Магнитно-резонансная томография в диагностике и дифференциальной диагностике очаговых поражений печени. Вестник РОНЦ им. Н.Н. Блохина РАМН. 2004; 15 (1): 2. Lukyanchenko A.B., Medvedeva B.M. Magnetic resonance imaging in the diagnosis and differential diagnosis of focal liver lesions. Vestnik RONC im. N.N. Blohina RAMN. 2004; 15 (1): 2. (In Russian)

25. Jeong Y.Y., Yim N.Y., Kang H.K. Hepatocellular carcinoma in the cirrhotic liver with helical CT and MRI: imaging spectrum and pitfalls of cirrhosis-related nodules. Am. J. Roentgenol. 2005; 185 (4): 1024–1032.

26. Lee M.H., Kim S.H., Park M.J. Gadoxetic acid-enhanced hepatobiliary phase MRI and high-b-value diffusionweighted imaging to distinguish well-differentiated hepatocellular carcinomas from benign nodules in patients with chronic liver disease. Am. J. Roentgenol. 2011; 197 (5): 868–875.

27. Лукьянченко А.Б., Медведева Б.М. Современная тактика распознавания новообразований печени. Издательская группа РОНЦ; Практическая медицина. 2015; 87–91. Lukyanchenko A.B., Medvedeva B.M. Modern tactics recognition of liver tumors. Izdatel'skaya gruppa RONC; Prakticheskaya meditsdina. 2015; 87–91. (In Russian)

28. Delbeke D., Martin W.H., Sandler M.P. Evaluation of benign vs malignant hepatic lesions with positron emission tomography. Arch. Surg. 1998; 133 (5): 510–516.

29. Trojan J., Schroeder O., Raedle J. Fluorine-18 FDG positron emission tomography for imaging of hepato cellular carcinoma. Am. J. Gastroenterol. 1999; 94 (11): 3314–3319.

30. Talbot J.N., Gutman F., Fartoux L. PET/CT in patients with hepatocellular carcinoma using [18F] fluorocholine: preliminary comparison with [18F] FDG PET/CT. Eur. J. Nucl. Med. Molecular Imaging. 2006; 33 (11): 1285–1289.

31. Yamamoto Y., Nishiyama Y., Kameyama R. Detection of hepatocellular carcinoma using 11C-choline PET: comparison with 18F-FDG PET. J. Nuclear Med. 2008; 49 (8): 1245–1248.

32. Hwang K.H., Choi D.J., Lee S.Y. Evaluation of patients with hepatocellular carcinomas using [11C] acetate and [18F] FDG PET/CT: A preliminary study. Applied Radiation and Isotopes. 2009; 67 (7): 1195–1198.

33. Lee J.W., Paeng J.C., Kang K.W. Prediction of tumor recurrence by 18F-FDG PET in liver transplantation for hepatocellular carcinoma. J. Nuclear Med. 2009; 50 (5): 682–687.

34. Talbot J.N., Fartoux L., Balogova S. Detection of hepatocellular carcinoma with PET/CT: a prospective comparison of 18F-fluorocholine and 18F-FDG in patients with cirrhosis or chronic liver disease. J. Nuclear Med. 2010; 51 (11): 1699–1706.

35. van den Esschert J.W., Bieze M., Beuers U.H. Differentiation of hepatocellular adenoma and focal nodular hyperplasia using 18F-fluorocholine PET/CT. Eur. J. Nucl. Med. Molecular Imaging. 2011; 38 (3): 436–440.

36. Kuang Y., Salem N., Tian H. Imaging lipid synthesis in hepatocellular carcinoma with [methyl-11C] choline: correlation with in vivo metabolic studies . J. Nuclear Med. 2011; 52 (1): 98–106.

37. Cahill G.F., Ashmore J., Renold A.E. Blood glucose and the liver . Am. J. Med. 1959; 26 (2): 264–282.

38. Hers H.G. The control of glycogen metabolism in the liver. Ann. Rev. Biochemistry. 1976; 44 (1): 167–190.

39. Nordlie R.C., Foster J.D., Lange A.J. Regulation of glucose production by the liver. Ann. Rev. Nutrition. 1999; 19 (1): 379–406.

40. Lee J.D., Yang W.I., Park Y.N. Different glucose uptake and glycolytic mechanisms between hepatocellular carcinoma and intrahepatic mass-forming cholangiocarcinoma with increased 18F-FDG uptake. J. Nucl. Med. 2005; 46 (10): 1753–1759.

41. Paudyal B., Oriuchi N., Paudyal P. Clinicopathological presentation of varying 18F-FDG uptake and expression of glucose transporter 1 and hexokinase II in cases of hepatocellular carcinoma and cholangiocellular carcinoma. Ann. Nuclear Med. 2008; 22 (1): 83–86.

42. Sorensen M., Frisch K., Bender D. The potential use of 2-[18F] fluoro-2-deoxy-D-galactose as a PET/CT tracer for detection of hepatocellular carcinoma. Eur. J. Nuclear Med. Molec. Imaging. 2011; 38 (9): 1723–1731.

43. Pritchard P. H., Vance D. E. Choline metabolism and phosphatidylcholine biosynthesis in cultured rat hepatocytes. Biochem. J. 1981; 196: 261–267.

44. Ackerstaff E., Glunde K., Bhujwalla Z.M. Choline phospholipid metabolism: a target in cancer cells? J. Cell. Biochem. 2003; 90 (3): 525–533.

45. Aoyama C., Liao H., Ishidate K. Structure and function of choline kinase isoforms in mammalian cells. Progress Lipid Res. 2004; 43 (3): 266–281.

46. Kent C. Regulatory enzymes of phosphatidyl choline biosynthesis: a personal perspective. Biochimicaet Biophysica Acta (BBA)-Molecular and Cell. Biology of Lipids. 2005; 1733 (1): 53–66.

47. Kuang Y., Salem N., Corn D. J. Transport and metabolism of radiolabeled choline in hepatocellular carcinoma. Molec. Pharmaceutics. 2010; 7 (6): 2077–2092.

48. Ringe K.I., Husarik D.B., Sirlin C.B. Gadoxetate disodium–enhanced MRI of the liver: part 1, protocol optimization and lesion appearance in the noncirrhotic liver. Am. J. Roentgenol. 2010; 195 (1): 13–28.

49. Jhaveri K., Cleary S., Audet, P., Balaa F. Сonsensus statements from a multidisciplinary expert panel on the utilization and application of a liver-specific MRI contrast agent (gadoxetic acid). Am. J. Roentgenol. 2015; 204 (3): 498–509.


Review

For citations:


Tulin P.E., Dolgushin M.B., Odzharova A.A., Mikhailov A.I., Nevzorov D.I., Medvedeva B.M. PET/CT witH 18F-FDG and 18F-Choline in the Complex Diagnostics of Disseminated Hepatocellular Cancer in the Patient Seven Years Old (Clinical Case). Medical Visualization. 2016;(5):67-73. (In Russ.)

Views: 1312


ISSN 1607-0763 (Print)
ISSN 2408-9516 (Online)