Применение радиомики в диагностике рака шейки матки: систематический обзор
https://doi.org/10.24835/1607-0763-1547
Аннотация
Цель исследования: проанализировать результаты изучения эффективности применения радиомического анализа при интерпретации лучевых изображений в уточнении диагностики рака шейки матки.
Материал и методы. Проведен систематический поиск медицинских статей в базах данных PubМed/MEDLINE, eLibrary, Scopus, в ресурсах NCCN, ESUR, ACR.
Результаты. При подборе медицинских статьей было выявлено в общей сложности 289 уникальных публикации, 218 из которых соответствовали критериям исключения. В итоговый обзор вошла 71 статья. Оценка средних точностных характеристик моделей производилась по значению площади под ROC-кривой (AUC), в том числе точность, чувствительность, специфичность и C-индекс.
Заключение. Рассмотрены основные ключевые аспекты и достоинства применения радиомики и текстурного анализа изображений при диагностике рака шейки матки. Внедрение радиомического анализа привело к обновленному восприятию анализа медицинских изображений. Результаты ряда исследований демонстрируют, что данные, извлекаемые с помощью радиомического анализа, обладают значительной диагностической и прогностической ценностью, позволяя объективно оценивать характеристики опухоли, ее стадию и распространенность, проводить дифференциальную диагностику новообразований.
Об авторах
В. А. СолодкийРоссия
Солодкий Владимир Алексеевич – академик РАН, доктор мед. наук, профессор, директор ФГБУ “Российский научный центр рентгенорадиологии” Минздрава России, Москва
https://orcid.org/0000-0002-1641-6452
Н. В. Нуднов
Нуднов Николай Васильевич – доктор мед. наук, профессор, заместитель директора по научной работе, заведующий научно-исследовательским отделом комплексной диагностики заболеваний и радиотерапии ФГБУ “Российский научный центр рентгенорадиологии” Минздрава России; профессор кафедры рентгенологии и радиологии ФГБОУ ДПО “Российская медицинская академия непрерывного профессионального образования” Минздрава России;
заместитель директора по научной работе, профессор кафедры онкологии и рентгенорадиологии ФГАОУ ВО “Российский университет дружбы народов имени Патриса Лумумбы” Минобрнауки России, Москва
https://orcid.org/0000-0001-5994-0468
E-mail: mailbox@rncrr.rssi.ru
П. Н. Султанова
Россия
Султанова Пери Назимовна – клинический ординатор по специальности “рентгенология” ФГБУ “Российский научный центр рентгенорадиологии” Минздрава России”, Москва
https://orcid.org/0009-0009-3006-8210
E-mail: sulperi14@mail.ru
С. П. Аксенова
Россия
Аксенова Светлана Павловна – канд. мед. наук, научный сотрудник лаборатории рентгенорадиологии научно-исследовательского отдела комплексной диагностики заболеваний и радиотерапии ФГБУ “Российский научный центр рентгенорадиологии” Минздрава России, Москва
https://orcid.org/0000-0003-2552-5754
E-mail: fabella@mail.ru
А. А. Борисов
Борисов Александр Александрович – аналитик ФГАОУ ВО РНИМУ им. Н.И. Пирогова Минздрава России, Москва
https://orcid.org/0000-0003-4036-5883
Э. С.-А. Шахвалиева
Шахвалиева Элина Саид-Аминовна – врач-рентгенолог ГБУЗ города Москвы “Детская городская клиническая больница № 9 им. Г.Н. Сперанского ДЗ города Москвы”, Москва
https://orcid.org/0009-0000-7535-8523
Д. Г. Карелидзе
Карелидзе Давид Георгиевич – клинический ординатор по специальности “рентгенология” ФГБУ “Российский научный центр рентгенорадиологии” Минздрава России, Москва
https://orcid.org/0009-0002-0375-1291
М. Е. Иванников
Иванников Михаил Евгеньевич – врач-рентгенолог ГБУЗ города Москвы “Городская клиническая больница имени А.К. Ерамишанцева ДЗ города Москвы”, Москва
https://orcid.org/0009-0007-0407-0953
А. И. Маковецкая
Маковецкая Алена Игоревна – клинический ординатор по специальности “рентгенология” ФГБУ “Российский научный центр рентгенорадиологии” Минздрава России, Москва
https://orcid.org/0009-0007-3964-7708
С. Р. Семенова
Семенова Софья Романовна – студентка ФГАОУ ВО РНИМУ им. Н.И. Пирогова Минздрава России, Москва
https://orcid.org/0009-0001-8927-2242
Конфликт интересов:
Pirogov Russian National Research Medical University
Список литературы
1. Всемирная организация здравоохранения, 2023,17 ноября. Рак шейки матки. https://www.who.int/ru/news-room/fact-sheets/detail/cervical-cancer?utm_source=chatgpt.com
2. Каприн А.Д., Старинский В.В., Шахзадова А.О. (ред.). Состояние онкологической помощи населению России в 2023 году. М.: МНИОИ им. П.А. Герцена – филиал ФГБУ “НМИЦ радиологии” Минздрава России, 2024. 262 с.
3. Statistics at a glance. https://gco.iarc.who.int/media/globocan/factsheets/populations/900-world-fact-sheet.pdf
4. Pecorelli S. Revised FIGO staging for carcinoma of the vulva, cervix, and endometrium. Int. J. Gynaecol. Obstet. 2009; 105 (2): 103–104. http://doi.org/10.1016/j.ijgo.2009.02.012.
5. Клинические рекомендации “Рак шейки матки”, 2023. http://disuria.ru/_ld/13/1376_kr20C53MZ.pdf
6. Dappa E., Elger T., Hasenburg A. et al. The value of advanced MRI techniques in the assessment of cervical cancer: a review. Insights. Imaging. 2017; 8 (5): 471–481. http://doi.org/10.1007/s13244-017-0567-0
7. Bizzarri N., Russo L., Dolciami M. et al. Radiomics systematic review in cervical cancer: gynecological oncologists' perspective. Int. J. Gynecol. Cancer. 2023; 33 (10): 1522–1541. http://doi.org/10.1136/ijgc-2023-004589
8. Антонова И.Б., Аксенова С.П., Нуднов Н.В., Кригер А.В. Возможности и ограничения магнитно-резонансной томографии для диагностики эндоцервикальных аденокарцином шейки матки. Digital Diagnostics. 2024; 5 (2): 149–166. http://doi.org/10.17816/dd585195
9. Тарачкова Е.В., Шориков М.А., Панов В.О., Кузнецов В.В., Усманова Л.Ш., Тюрин И.Е. Возможности мультипараметрической магнитно-резонансной томографии в дифференциальной диагностике гистологического типа рака шейки матки на дооперационном этапе. Опухоли женской репродуктивной системы. 2016; 12 (2): 60–69. http://doi.org/10.17650/1994-4098-2016-12-2-60-69
10. Aerts H.J. The Potential of Radiomic-Based Phenotyping in Precision Medicine: A Review. JAMA Oncol. 2016; 2 (12): 1636–1642. http://doi.org/10.1001/jamaoncol.2016.2631
11. Bizzarri N., Russo L., Dolciami M. et al. Radiomics systematic review in cervical cancer: gynecological oncologists' perspective. Int. J. Gynecol. Cancer. 2023; 33 (10): 1522–1541. http://doi.org/10.1136/ijgc-2023-004589
12. Zhao X., Wang X., Zhang B. et al. Classifying early stages of cervical cancer with MRI-based radiomics. Magn. Reson. Imaging. 2022; 89: 70–76. http://doi.org/10.1016/j.mri.2022.03.002
13. Wang W., Jiao Y., Zhang L. et al. Multiparametric MRI-based radiomics analysis: differentiation of subtypes of cervical cancer in the early stage. Acta Radiol. 2022; 63 (6): 847–856. http://doi.org/10.1177/02841851211014188
14. Aouadi S., Torfeh T., Bouhali O. et al. Prediction of cervix cancer stage and grade from diffusion weighted imaging using EfficientNet. Biomed. Phys. Eng. Express. 2024; 10 (4). http://doi.org/10.1088/2057-1976/ad5207
15. Chong G.O., Park S.H., Park N.J. et al. Predicting Tumor Budding Status in Cervical Cancer Using MRI Radiomics: Linking Imaging Biomarkers to Histologic Characteristics. Cancers (Basel). 2021; 13(20): 5140. http://doi.org/10.3390/cancers13205140
16. Deng X., Liu M., Sun J. et al. Feasibility of MRI-based radiomics features for predicting lymph node metastases and VEGF expression in cervical cancer. Eur. J. Radiol. 2021; 134: 109429. http://doi.org/10.1016/j.ejrad.2020.109429
17. Li X.R., Jin J.J., Yu Y. et al. PET-CT radiomics by integrating primary tumor and peritumoral areas predicts E-cadherin expression and correlates with pelvic lymph node metastasis in early-stage cervical cancer. Eur. Radiol. 2021; 31 (8): 5967–5979. http://doi.org/10.1007/s00330-021-07690-7
18. Huang K., Huang X., Zeng C. et al. Radiomics signature for dynamic changes of tumor-infiltrating CD8+ T cells and macrophages in cervical cancer during chemoradiotherapy. Cancer Imaging. 2024; 24 (1): 54. http://doi.org/10.1186/s40644-024-00680-0
19. Yu Z., Zhihui Q., Linrui L. et al. Machine Learning-Based Models for Assessing Postoperative Risk Factors in Patients with Cervical Cancer. Acad. Radiol. 2024; 31 (4): 1410–1418. http://doi.org/10.1016/j.acra.2023.09.031
20. Liu Y., Zhang Y., Cheng R. et al. Radiomics analysis of apparent diffusion coefficient in cervical cancer: A preliminary study on histological grade evaluation. J. Magn. Reson. Imaging. 2019; 49 (1): 280–290. http://doi.org/10.1002/jmri.26192
21. Wang W., Jiao Y., Zhang L. et al. Multiparametric MRI-based radiomics analysis: differentiation of subtypes of cervical cancer in the early stage. Acta Radiol. 2022; 63 (6): 847–856. http://doi.org/10.1177/02841851211014188
22. Chong G.O., Park S.H., Park N.J. et al. Predicting Tumor Budding Status in Cervical Cancer Using MRI Radiomics: Linking Imaging Biomarkers to Histologic Characteristics. Cancers (Basel). 2021; 13 (20): 5140. http://doi.org/10.3390/cancers13205140
23. Li X.R., Jin J.J., Yu Y. et al. PET-CT radiomics by integrating primary tumor and peritumoral areas predicts E-cadherin expression and correlates with pelvic lymph node metastasis in early-stage cervical cancer. Eur. Radiol. 2021; 31 (8): 5967–5979. http://doi.org/10.1007/s00330-021-07690-7
24. Liu Y., Song T., Dong T.F. et al. MRI-based radiomics analysis to evaluate the clinicopathological characteristics of cervical carcinoma: a multicenter study. Acta Radiol. 2023; 64 (1): 395–403. http://doi.org/10.1177/02841851211065142
25. Umutlu L., Nensa F., Demircioglu A. et al. Radiomics Analysis of Multiparametric PET/MRI for N- and M-Staging in Patients with Primary Cervical Cancer. Rofo. 2020; 192 (8): 754–763. http://doi.org/10.1055/a-1100-0127
26. Wu Q., Shi D., Dou S. et al. Radiomics Analysis of Multiparametric MRI Evaluates the Pathological Features of Cervical Squamous Cell Carcinoma. J. Magn. Reson. Imaging. 2019; 49 (4): 1141–1148. http://doi.org/10.1002/jmri.26301
27. Chong G.O., Park S.H., Jeong S.Y. et al. Prediction Model for Tumor Budding Status Using the Radiomic Features of F-18 Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in Cervical Cancer. Diagnostics (Basel). 2021; 11 (8): 1517. http://doi.org/10.3390/diagnostics11081517
28. Wang M., Perucho J.A.U., Vardhanabhuti V. et al. Radiomic Features of T2-weighted Imaging and Diffusion Kurtosis Imaging in Differentiating Clinicopathological Characteristics of Cervical Carcinoma. Acad. Radiol. 2022; 29 (8): 1133–1140. http://doi.org/10.1016/j.acra.2021.08.018
29. Zhao X., Wang X., Zhang B. et al. Classifying early stages of cervical cancer with MRI-based radiomics. Magn. Reson. Imaging. 2022; 89: 70–76. http://doi.org/10.1016/j.mri.2022.03.002
30. Huang Q., Deng B., Wang Y. et al. Reduced field-of-view DWI derived clinical-radiomics model for the prediction of stage in cervical cancer. Insights. Imaging. 2023; 14 (1): 18. http://doi.org/10.1186/s13244-022-01346-w
31. Huang K., Huang X., Zeng C. et al. Radiomics signature for dynamic changes of tumor-infiltrating CD8+ T cells and macrophages in cervical cancer during chemoradiotherapy. Cancer Imaging. 2024; 24 (1): 54. http://doi.org/10.1186/s40644-024-00680-0
32. Liu H., Lao M., Zhang Y. et al. Radiomics-based machine learning models for differentiating pathological subtypes in cervical cancer: a multicenter study. Front. Oncol. 2024; 14: 1346336. http://doi.org/10.3389/fonc.2024.1346336
33. Wu F., Zhang R., Li F. et al. Radiomics analysis based on multiparametric magnetic resonance imaging for differentiating early stage of cervical cancer. Front. Med. (Lausanne). 2024; 11: 1336640. http://doi.org/10.3389/fmed.2024.1336640
34. Yu Z., Zhihui Q., Linrui L. et al. Machine Learning-Based Models for Assessing Postoperative Risk Factors in Patients with Cervical Cancer. Acad. Radiol. 2024; 31 (4): 1410–1418. http://doi.org/10.1016/j.acra.2023.09.031
35. Wang S., Jiang T., Hu X. et al. Can the combination of DWI and T2WI radiomics improve the diagnostic efficiency of cervical squamous cell carcinoma? Magn. Reson. Imaging. 2022; 92: 197–202. http://doi.org/10.1016/j.mri.2022.07.005
36. Liu Y., Dong T.F., Li P.J. et al. MRI-based radiomics features for the non-invasive prediction of FIGO stage in cervical carcinoma: A multi-center study. Magn. Reson. Imaging. 2024; 110: 170–175. http://doi.org/10.1016/j.mri.2023.11.012
37. Zhang Y., Hu Y., Zhao S., Xu S. Validation of the 2018 FIGO staging system for stage IIIC cervical cancer by determining the metabolic and radiomic heterogeneity of primary tumors based on 18F-FDG PET/CT. Abdom Radiol (NY). 2024; 49 (6): 2027–2039. http://doi.org/10.1007/s00261-024-04226-7
38. Li Z., Li H., Wang S. et al. MR-Based Radiomics Nomogram of Cervical Cancer in Prediction of the Lymph-Vascular Space Invasion preoperatively. J. Magn. Reson. Imaging. 2019; 49 (5): 1420–1426. http://doi.org/10.1002/jmri.26531
39. Du W., Wang Y., Li D. et al. Preoperative Prediction of Lymphovascular Space Invasion in Cervical Cancer With Radiomics – Based Nomogram. Front. Oncol. 2021; 11: 637794. http://doi.org/10.3389/fonc.2021.637794
40. Wang T., Gao T., Guo H. et al. Preoperative prediction of parametrial invasion in early-stage cervical cancer with MRI-based radiomics nomogram. Eur. Radiol. 2020; 30 (6): 3585–3593. http://doi.org/10.1007/S00330-019-06655-1
41. Huang G., Cui Y., Wang P. et al. Multi-Parametric Magnetic Resonance Imaging-Based Radiomics Analysis of Cervical Cancer for Preoperative Prediction of Lymphovascular Space Invasion. Front. Oncol. 2022; 11: 663370. http://doi.org/10.3389/fonc.2021.663370
42. Li X., Xu C., Yu Y. et al. Prediction of lymphovascular space invasion using a combination of tenascin-C, cox-2, and PET/CT radiomics in patients with early-stage cervical squamous cell carcinoma. BMC Cancer. 2021; 21 (1): 866. http://doi.org/10.1186/S12885-021-08596-9
43. Wu Y, Wang S., Liu X.. et al. Habitat-based radiomics enhances the ability to predict lymphovascular space invasion in cervical cancer: a multi-center study. Front. Oncol. 2023; 13: 1252074. http://doi.org/10.3389/fonc.2023.1252074
44. Xiao M., Li Y., Ma F. et al. Multiparametric MRI radiomics nomogram for predicting lymph-vascular space invasion in early-stage cervical cancer. Br. J. Radiol. 2022; 95 (1134): 20211076. http://doi.org/10.1259/bjr.20211076
45. Cui L., Yu T., Kan Y. et al. Multi-parametric MRI-based peritumoral radiomics on prediction of lymph-vascular space invasion in early-stage cervical cancer. Diagn. Interv. Radiol. 2022; 28 (4): 312–321. http://doi.org/10.5152/dir.2022.20657
46. Liu F.H., Zhao X.R., Zhang X.L. et al. Multiparametric mri-based radiomics nomogram for predicting lymph-vascular space invasion in cervical cancer. BMC Med. Imaging. 2024; 24 (1): 167. http://doi.org/10.1186/s12880-024-01344-y
47. Ren J., Li Y., Yang J.J. et al. MRI-based radiomics analysis improves preoperative diagnostic performance for the depth of stromal invasion in patients with early stage cervical cancer. Insights. Imaging. 2022; 13 (1): 17. http://doi.org/10.1186/s13244-022-01156-0
48. Yan H., Huang G., Yang Z. et al. Machine Learning-Based Multiparametric Magnetic Resonance Imaging Radiomics Model for Preoperative Predicting the Deep Stromal Invasion in Patients with Early Cervical Cancer. J. Imaging Inform. Med. 2024; 37 (1): 230–246. http://doi.org/10.1007/s10278-023-00906-w
49. Yu Z., Zhihui Q., Linrui L. et al. Machine Learning-Based Models for Assessing Postoperative Risk Factors in Patients with Cervical Cancer. Acad. Radiol. 2024; 31 (4): 1410–1418. http://doi.org/10.1016/j.acra.2023.09.031
50. Li J., Cui N., Wang Y. et al. Prediction of preoperative lymph-vascular space invasion and survival outcomes of cervical squamous cell carcinoma by utilizing 18F-FDG PET/CT imaging at early stage. Nucl. Med. Commun. 2024; 45 (12): 1069–1081. http://doi.org/10.1097/MNM.0000000000001909
51. Shang F., Tan Z., Gong T. et al. Evaluation of parametrial infiltration in patients with IB-IIB cervical cancer by a radiomics model integrating features from tumoral and peritumoral regions in 18F-fluorodeoxy glucose positron emission tomography/MR images. NMR Biomed. 2023: e4945. http://doi.org/10.1002/nbm.4945
52. Song J, Hu Q, Ma Z, et al. Feasibility of T2WI-MRI-based radiomics nomogram for predicting normal-sized pelvic lymph node metastasis in cervical cancer patients. Eur. Radiol. 2021; 31 (9): 6938–6948. http://doi.org/10.1007/s00330-021-07735-x
53. Xiao M., Ma F., Li Y. et al. Multiparametric MRI-Based Radiomics Nomogram for Predicting Lymph Node Metastasis in Early-Stage Cervical Cancer. J. Magn. Reson. Imaging. 2020; 52 (3): 885–896. http://doi.org/10.1002/jmri.27101
54. Chen X., Liu W., Thai T.C. et al. Developing a new radiomics-based CT image marker to detect lymph node metastasis among cervical cancer patients. Comput. Methods Programs. Biomed. 2020; 197: 105759. http://doi.org/10.1016/j.cmpb.2020.105759
55. Hou L., Zhou W., Ren J. et al. Radiomics Analysis of Multiparametric MRI for the Preoperative Prediction of Lymph Node Metastasis in Cervical Cancer. Front. Oncol. 2020; 10: 1393. http://doi.org/10.3389/fonc.2020.01393
56. Dong T., Yang C., Cui B. et al. Development and Validation of a Deep Learning Radiomics Model Predicting Lymph Node Status in Operable Cervical Cancer. Front. Oncol. 2020; 10: 464. http://doi.org/10.3389/fonc.2020.00464
57. Shi J., Dong Y., Jiang W. et al. MRI-based peritumoral radiomics analysis for preoperative prediction of lymph node metastasis in early-stage cervical cancer: A multi-center study. Magn. Reson. Imaging. 2022; 88: 1–8. http://doi.org/10.1016/j.mri.2021.12.008
58. Deng X., Liu M., Sun J. et al. Feasibility of MRI-based radiomics features for predicting lymph node metastases and VEGF expression in cervical cancer. Eur. J. Radiol. 2021; 134: 109429. http://doi.org/10.1016/j.ejrad.2020.109429
59. Wu Q., Wang S., Chen X. et al. Radiomics analysis of magnetic resonance imaging improves diagnostic performance of lymph node metastasis in patients with cervical cancer. Radiother. Oncol. 2019; 138: 141–148. http://doi.org/10.1016/j.radonc.2019.04.035
60. Wang T., Gao T., Yang J. et al. Preoperative prediction of pelvic lymph nodes metastasis in early-stage cervical cancer using radiomics nomogram developed based on T2-weighted MRI and diffusion-weighted imaging. Eur. J. Radiol. 2019; 114: 128–135. http://doi.org/10.1016/j.ejrad.2019.01.003
61. Liu Y., Song T., Dong T.F. et al. MRI-based radiomics analysis to evaluate the clinicopathological characteristics of cervical carcinoma: a multicenter study. Acta Radiol. 2023; 64 (1): 395–403. http://doi.org/10.1177/02841851211065142
62. Liu Y., Fan H., Dong D. et al. Computed tomography-based radiomic model at node level for the prediction of normal-sized lymph node metastasis in cervical cancer. Transl. Oncol. 2021; 14 (8): 101113. http://doi.org/10.1016/j.tranon.2021.101113
63. Kan Y., Dong D., Zhang Y. et al. Radiomic signature as a predictive factor for lymph node metastasis in early-stage cervical cancer. J. Magn. Reson. Imaging. 2019; 49 (1): 304–310. http://doi.org/10.1002/jmri.26209
64. Yan L., Yao H., Long R. et al. A preoperative radiomics model for the identification of lymph node metastasis in patients with early-stage cervical squamous cell carcinoma. Br. J. Radiol. 2020; 93 (1116): 20200358. http://doi.org/10.1259/bjr.20200358
65. Yu Y.Y., Zhang R., Dong R.T. et al. Feasibility of an ADC-based radiomics model for predicting pelvic lymph node metastases in patients with stage IB-IIA cervical squamous cell carcinoma. Br. J. Radiol. 2019; 92 (1097): 20180986. http://doi.org/10.1259/bjr.20180986
66. Chen J., He B., Dong D. et al. Noninvasive CT radiomic model for preoperative prediction of lymph node metastasis in early cervical carcinoma. Br. J. Radiol. 2020; 93 (1108): 20190558. http://doi.org/10.1259/bjr.20190558
67. Xia X., Li D., Du W. et al. Radiomics Based on Nomogram Predict Pelvic Lymphnode Metastasis in Early-Stage Cervical Cancer. Diagnostics (Basel). 2022; 12 (10): 2446. http://doi.org/10.3390/diagnostics12102446
68. Wang T., Li Y.Y., Ma N.N. et al. A MRI radiomics-based model for prediction of pelvic lymph node metastasis in cervical cancer. Wld J. Surg. Oncol. 2024; 22 (1): 55. http://doi.org/10.1186/s12957-024-03333-5
69. Zhang Z., Wan X., Lei X. et al. Intra- and peri-tumoral MRI radiomics features for preoperative lymph node metastasis prediction in early-stage cervical cancer. Insights. Imaging. 2023; 14 (1): 65. http://doi.org/10.1186/s13244-023-01405-w
70. Lucia F., Bourbonne V., Pleyers C. et al. Multicentric development and evaluation of 18F-FDG PET/CT and MRI radiomics models to predict para-aortic lymph node involvement in locally advanced cervical cancer. Eur. J. Nucl. Med. Mol. Imaging. 2023; 50 (8): 2514–2528. http://doi.org/10.1007/s00259-023-06180-w
71. Zhu Y., Fu C., Du J. et al. Prediction of Cervical Cancer Lymph Node Metastasis via a Multimodal Transfer Learning Approach. Br. J. Hosp. Med. (Lond). 2024; 85 (10): 1–14. http://doi.org/10.12968/hmed.2024.0428
72. Liu J., Dong L., Zhang X. et al. Radiomics analysis for prediction of lymph node metastasis after neoadjuvant chemotherapy based on pretreatment MRI in patients with locally advanced cervical cancer. Front. Oncol. 2024; 14: 1376640. http://doi.org/10.3389/fonc.2024.1376640
73. Liu Y., Song T., Dong T.F. et al. MRI-based radiomics analysis to evaluate the clinicopathological characteristics of cervical carcinoma: a multicenter study. Acta Radiol. 2023; 64 (1): 395–403. http://doi.org/10.1177/02841851211065142
74. Yu Z., Zhihui Q., Linrui L. et al. Machine Learning-Based Models for Assessing Postoperative Risk Factors in Patients with Cervical Cancer. Acad. Radiol. 2024; 31 (4): 1410–1418. http://doi.org/10.1016/j.acra.2023.09.031
75. Ai C., Zhang L., Ding W. et al. A nomogram-based optimized Radscore for preoperative prediction of lymph node metastasis in patients with cervical cancer after neoadjuvant chemotherapy. Front. Oncol. 2023; 13: 1117339. http://doi.org/10.3389/fonc.2023.1117339
76. Chan K.C., Perucho J.A.U., Subramaniam R.M., Lee E.Y.P. Utility of pre-treatment 18F-fluorodeoxyglucose PET radiomic analysis in assessing nodal involvement in cervical cancer. Nucl. Med. Commun. 2023; 44 (5): 375–380. http://doi.org/10.1097/MNM.0000000000001672
77. Zhang B., Liu L., Meng D., Kue C.S. Development of a radiomic model for cervical cancer staging based on pathologically verified, retrospective metastatic lymph node data. Acta Radiol. 2024; 65 (12): 1548–1559. http://doi.org/10.1177/02841851241291931.
78. Liu S., Zhou Y., Wang C. et al. Prediction of lymph node status in patients with early-stage cervical cancer based on radiomic features of magnetic resonance imaging (MRI) images. BMC Med. Imaging. 23, 101 (2023). http://doi.org/10.1186/s12880-023-01059-6
79. Zhang Z., Li X., Sun H. Development of machine learning models integrating PET/CT radiomic and immunohistochemical pathomic features for treatment strategy choice of cervical cancer with negative pelvic lymph node by mediating COX-2 expression. Front. Physiol. 2022; 13: 994304. http://doi.org/10.3389/fphys.2022.994304
80. Ștefan P.A., Coțe A., Csutak C. et al. Texture Analysis in Uterine Cervix Carcinoma: Primary Tumour and Lymph Node Assessment. Diagnostics (Basel). 2023; 13 (3): 442. http://doi.org/10.3390/diagnostics13030442
Рецензия
Для цитирования:
Солодкий В.А., Нуднов Н.В., Султанова П.Н., Аксенова С.П., Борисов А.А., Шахвалиева Э.С., Карелидзе Д.Г., Иванников М.Е., Маковецкая А.И., Семенова С.Р. Применение радиомики в диагностике рака шейки матки: систематический обзор. Медицинская визуализация. https://doi.org/10.24835/1607-0763-1547
For citation:
Solodky V.A., Nudnov N.V., Sultanova P.N., Aksenova S.P., Borisov A.A., Shakhvalieva E.S., Karelidze D.G., Ivannikov M.E., Makovetskaya A.I., Semenova S.R. Application of radiomics in the diagnosis of cervical cancer: systematic review. Medical Visualization. (In Russ.) https://doi.org/10.24835/1607-0763-1547