Elastography of renal parenchyma in healthy patients (literature review)
https://doi.org/10.24835/1607-0763-1501
Abstract
Aim: analysis of literature sources and comparative evaluation of research results on the effectiveness of performing renal elastography in almost healthy patients, development of stiffness standards for kidneys in practically healthy patients and development of a standard technology for performing the study.
Material and methods. A search was conducted for scientific articles, publications, clinical recommendations, reports of congresses in the information and analytical systems eLibrary, Google Scholar and PubMed for 2013–2024 by keywords: kidney elastography, assessment of kidney stiffness, ultrasound elastography of the kidneys, renal elastography, renal stiffness. The analysis of the literature lists of the found articles according to the relevant criteria was also carried out.
Results. According to the relevant keywords, 288 articles were selected, including publications of scientific congresses and conferences, 39 articles were recognized by the authors as corresponding to the subject of the scientific review. And 8 additional articles were selected from the literature lists of the found articles. As a result of the search, a group of articles was created among which the material was analyzed to get answers to the questions posed.
Conclusion. The analysis of the literature data is one of the stages of systematization of previously conducted studies in the field of renal elasticity and allows us to note the importance of excluding all factors described by previous authors that cause significant variability in the stiffness of unchanged renal parenchyma. As a result of the review, the authors showed the possibility of using 2D shear wave ultrasound elastography in assessing the stiffness of the renal parenchyma by a non-invasive method and the need to develop a standard research methodology that minimizes the error.
About the Authors
M. L. MadzhuginRussian Federation
Mikhail L. Madzhugin – doctor, department of Ultrasound Diagnostics, Clinical Hospital “RZD-Medicine” in Rostov-on-Don, Rostov-on-Don.
https://orcid.org/0009-0003-1961-4141
E-mail: doctormi1982@gmail.com
A. S. Bolotskov
Russian Federation
Alexander S. Bolotskov – Head of the Ultrasound Diagnostics Department, Clinical Hospital “RZD-Medicine”, Rostov-on-Don.
https://orcid.org/0000-0002-6765-0724
E-mail: stefandoc@yandex.ru
M. S. Firsov
Russian Federation
Maxim S. Firsov – doctor, department of Ultrasound Diagnostics, Clinical Hospital “RZD-Medicine”, Rostov-on-Don.
https://orcid.org/0009-0009-3076-5577
E-mail: dar@apkipp.ru
A. R. Dadayan
Russian Federation
Arsen R. Dadayan – surgeon, Surgical department, Central City Hospital N.A. Semashko in Rostov-on-Don, Rostov-on-Don.
https://orcid.org/0000-0002-1766-305X
E-mail: dar@apkipp.ru
References
1. Nie P., Chen R., Luo M. et al. Clinical and Pathological Analysis of 4910 Patients Who Received Renal Biopsies at a Single Center in Northeast China. Biomed. Res. Int. 2019; 1: 6869179. http://doi.org/10.1155/2019/6869179
2. Zhang Q.L., Rothenbacher D. Prevalence of chronic kidney disease in population-based studies: systemic review. BMC Public Health. 2008; 8: 117. http://doi.org/10.1186/1471-2458-8-117
3. Ophir J., Céspedes I., Ponnekanti H. et al. Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason. Imaging. 1991; 13 (1): 111–134. http://doi.org/10.1177/016173469101300201
4. Wang L. Acoustic Radiation Force Based Ultrasound Elasticity Imaging for Biomedical Applications. Sensors (Basel). 2018; 18 (7): 2252. http://doi.org/10.3390/s18072252.
5. Sigrist R.M.S., Liau J., Kaffas A.E. et al. Ultrasound Elastography: Review of Techniques and Clinical Applications. Theranostics. 2017; 7 (5): 1303–1329. http://doi.org/10.7150/thno.18650.
6. Ozturk A., Grajo J.R., Dhyani M. et al. Principles of ultrasound elastography. Abdom. Radiol. (NY). 2018; 43 (4): 773–785. http://doi.org/10.1007/s00261-018-1475-6
7. Dietrich C.F., Bamber J., Berzigotti A. et al. EFSUMB Guidelines and Recommendations on the Clinical Use of Liver Ultrasound Elastography, Update 2017 (Long Version). Ultraschall. Med. 2017; 38 (4): e16–e47. http://doi.org/10.1055/s-0043-103952
8. European Association for Study of Liver. EASL Clinical Practice Guidelines: management of hepatitis C virus infection. J. Hepatol. 2014; 60 (1): 392–420. http://doi.org/10.1016/j.jhep.2013.11.003
9. Mathew G.G., Gunda K.C., Prakash K.C. et al. Correlation of Acoustic Radiation Force Impulse Imaging with Chronicity Markers in Native Renal Biopsy. G. Ital. Nefrol. 2023; 40 (4): 4.
10. Demin I.Y., Rykhtik P.I., Spivak А.E., Safonov D.V. A New Criterion for Shear Wave Elastometric Assessment Using Modulus of Stiffness Difference between Object and Environment. Sovrem. Tekhnologii Med. 2022; 14 (5): 5–13. http://doi.org/10.17691/stm2022.14.5.01
11. Cosgrove D., Barr R., Bojunga J. et al. WFUMB Guidelines and Recommendations on the Clinical Use of Ultrasound Elastography: Part 4. Thyroid. Ultrasound Med. Biol. 2017; 43 (1): 4–26. http://doi.org/10.1016/j.ultrasmedbio.2016.06.022
12. Barr R.G., Wilson S.R., Rubens D. et al. Update to the Society of Radiologists in Ultrasound Liver Elastography Consensus Statement. Radiology. 2020; 296 (2): 263–274. http://doi.org/10.1148/radiol.2020192437
13. Grenier N., Gennisson J.L., Cornelis F. et al. Renal ultrasound elastography. Diagn. Interv. Imaging. 2013; 94: 545–550. http://doi.org/10.1016/j.diii.2013.02.003
14. Arda K., Ciledag N., Aktas E. et al. Quantita-tive assessment of normal soft-tissue elasticity using shear-wave ultrasound elastography. Am. J. Roentgenol. 2011; 197 (1): 532–536. http://doi.org/10.2214/AJR.10.5449
15. Gennisson J.L., Grenier N., Combe C., Tanter M. Supersonic shear wave elastography of in vivo pig kidney: influence of blood pressure, urinary pressure and tissue anisotropy. Ultrasound Med. Biol. 2012; 38 (1): 1559–1567. http://doi.org/10.1016/j.ultrasmedbio.2012.04.013
16. Guo L.H., Xu H.X., Fu H.J. et al. Acoustic radiation force impulse imaging for noninvasive evaluation of renal parenchyma elasticity: preliminary findings. PLoS One. 2013; 8 (1): e68925. http://doi.org/10.1371/journal.pone.0068925
17. Bruno C., Caliari G., Zaffanello M. et al. Acoustic radiation force impulse (ARFI) in the evaluation of the renal parenchymal stiffness in pediatric patients with vesicoureteral reflux: preliminary results. Eur. Radiol. 2013; 23 (1): 3477–3484. http://doi.org/10.1007/s00330-013-2959-y
18. Cui G., Yang Z., Zhang W. et al. Evaluation of acoustic radiation force impulse imaging for the clinicopathological typing of renal fibrosis. Exp. Ther. Med. 2014; 7 (1): 233–235. http://doi.org/10.3892/etm.2013.1377
19. Sohn B., Kim M.J., Han S.W. et al. Shear wave velocity measurements using acoustic radiation force im-pulse in young children with normal kidneys versus hydro-nephrotic kidneys. Ultrasonography. 2014; 33 (1): 116–121. http://doi.org/10.14366/usg.14002
20. Bob F., Bota S., Sporea I. et al. Kidney shear wave speed values in subjects with and without renal pathology and interoperator reproducibility of acoustic radiation force impulse elastography (ARFI) – preliminary results. PLoS One. 2014; 9 (1): e113761. http://doi.org/10.1371/journal.pone.0113761
21. Asano K., Ogata A., Tanaka K. et al. Acoustic radiation force impulse elastography of the kidneys: is shear wave velocity affected by tissue fibrosis or renal blood flow? J. Ultrasound Med. 2014; 33 (1): 793–801. http://doi.org/10.7863/ultra.33.5.793
22. Hu Q., Wang X.Y., He H.G. et al. Acoustic radiation force impulse imaging for noninvasive assessment of renal histopathology in chronic kidney disease. PLoS One. 2014; 9 (1): e115051. http://doi.org/10.1371/journal.pone.0115051
23. Yu N., Zhang Y., Xu Y. Value of virtual touch tissue quantification in stages of diabetic kidney disease. J. Ultrasound Med. 2014; 33 (1): 787–792. http://doi.org/10.7863/ultra.33.5.787
24. Tian F., Wang Z.B., Meng D.M. et al. Preliminary study on the role of virtual touch tissue quantification combined with a urinary β2-microglobulin test on the early diagnosis of gouty kidney damage. Ultrasound Med. Biol. 2014; 40 (1): 1394–1399. http://doi.org/10.1016/j.ultrasmedbio.2014.01.01
25. Samir A.E., Allegretti A.S., Zhu Q. et al. Shear wave elastography in chronic kidney disease: a pilot experience in native kidneys. BMC Nephrol. 2015; 16 (1): 119. http://doi.org/10.1186/s12882-015-0120-7
26. Goya C., Kilinc F., Hamidi C. et al. Acoustic radiation force impulse imaging for evaluation of renal parenchyma elasticity in diabetic nephropathy. Am. J. Roentgenol. 2015; 204 (1): 324–329. http://doi.org/10.2214/AJR.14.12493
27. Sommerer C., Scharf M., Seitz C. et al. Assessment of renal allograft fibrosis by transient elastography. Transpl. Int. 2013; 26 (1): 545–551. http://doi.org/10.1111/tri.12073
28. Bota S., Bob F., Sporea I. et al. Factors that influence kidney shear wave speed assessed by acoustic radiation force impulse elastography in patients without kidney pathology. Ultrasound Med. Biol. 2015; 41 (1): 1–6. http://doi.org/10.1016/j.ultrasmedbio.2014.07.023
29. Amosov A.V., Krupinov G.E., Sorokin N.I. et al. Shear wave ultrasound elastography in the diagnosis of kidney tumors. Ultrasound and Functional Diagnostics. 2015; 4: 17a. (In Russian)
30. Borsukov A.V., Bekezin V.V., Kozlova E.Yu., Peresetskaya O.V. Diagnostic possibilities of ultrasound elastography of the kidneys in children with metabolic syndrome. Doctor.ru 2016; 6: 52–56. (In Russian)
31. Bekezin V.V., Borsukov A.V., Kozlova E.Yu. The effect of arterial hypertension in obese adolescents on kidney condition according to shear wave elastography. Russian Journal of Cardiology. 2022; 27 (S6): 6. (In Russian)
32. Močnik M., Marčun Varda N. Ultrasound Elastography in Children. Children (Basel). 2023; 10 (8): 1296. http://doi.org/10.3390/children10081296
33. Zhang Y.Y., Meng Z.J. Definition and classification of acute-on-chronic liver diseases. Wld J. Clin. Cases. 2022; 10 (15): 4717–4725. http://doi.org/10.12998/wjcc.v10.i15.4717
34. Herrmann E., de Lédinghen V., Cassinotto C. et al. Assessment of biopsy-proven liver fibrosis by two-dimensional shear wave elastography: An individual patient data-based meta-analysis. Hepatology. 2018; 67 (1): 260–272. http://doi.org/10.1002/hep.29179
35. Magri F., Chytiris S., Chiovato L. The role of elastography in thyroid ultrasonography. Curr. Opin. Endocrinol. Diabetes Obes. 2016; 23 (5): 416–422. http://doi.org/10.1097/MED.0000000000000274
36. Ricci P., Maggini E., Mancuso E. et al. Clinical application of breast elastography: state of the art. Eur. J. Radiol. 2014; 83 (3): 429–437. http://doi.org/10.1016/j.ejrad.2013.05.007
37. Cui X.W., Li K.N., Yi A.J. et al. Ultrasound elastography. Endosc. Ultrasound. 2022; 11 (4): 252–274. http://doi.org/10.4103/EUS-D-21-00151
38. Zaffanello M., Bruno C. Clinical perspective on renal elasticity quantification by acoustic radiation force impulse: Where we are and where we are going. Wld J. Clin. Urol. 2015; 4 (1): 100–104. http://doi.org/10.5410/wjcu.v4.i3.100
39. Rizzo L., L'Abbate L., Attanasio M. et al. Depth effect on point shear wave velocity elastography: Evidence in a chronic hepatitis C patient cohort. Ultrasound. 2024; 32 (1): 53–61. http://doi.org/10.1177/1742271X231183370
40. Nery F., Szczepankiewicz F., Kerkelä L. et al. In vivo demonstration of microscopic anisotropy in the human kidney using multidimensional diffusion MRI. Magn. Reson. Med. 2019; 82 (6): 2160–2168. http://doi.org/10.1002/mrm.27869
41. Jiang B., Liu F., Fu H., Mao J. Advances in imaging techniques to assess kidney fibrosis. Ren. Fail. 2023; 45 (1): 2171887. http://doi.org/10.1080/0886022X.2023.2171887
42. Nishino T., Tomori S., Ono S. et al. Effect of proteinuria at relapse on shear wave velocity assessed using ultrasound elastography in children with idiopathic nephrotic syndrome. J. Med. Ultrason. 2024; 1 (1): 4. http://doi.org/10.1007/s10396-024-01455-7
43. Gonçalves L.M., Forte G.C., Holz T.G. et al. Shear wave elastography and Doppler ultrasound in kidney transplant recipients. Radiol. Bras. 2022; 55 (1): 19–23. http://doi.org/10.1590/0100-3984.2020.0148
44. Filipov T., Teutsch B., Szabó A. et al. Investigating the role of ultrasound-based shear wave elastography in kidney transplanted patients: correlation between non-invasive fibrosis detection, kidney dysfunction and biopsy results-a systematic review and meta-analysis. J. Nephrol. 2024; 1 (1): 8. http://doi.org/10.1007/s40620-023-01856-w
45. Kishimoto R., Kikuchi K., Koyama A. et al. Intra- and inter-operator reproducibility of US point shear-wave elastography in various organs: evaluation in phantoms and healthy volunteers. Eur. Radiol. 2019; 29 (11): 5999–6008. http://doi.org/10.1007/s00330-019-06195-8
46. Fang C., Konstantatou E., Romanos O. et al. Reproducibility of 2-Dimensional Shear Wave Elastography Assessment of the Liver: A Direct Comparison With Point Shear Wave Elastography in Healthy Volunteers. J. Ultrasound Med. 2017; 36 (8): 1563–1569. http://doi.org/10.7863/ultra.16.07018
47. Kim T.M., Ahn H., Cho J.Y. et al. Prediction of acute rejection in renal allografts using shear-wave dispersion slope. Eur. Radiol. 2023; 1 (1): 12. http://doi.org/10.1007/s00330-023-10492-8
48. Madzhugin M.L., Bolotskov A.S., Dadayan A.R., Firsov M.S. Assessment of renal parenchyma stiffness in almost healthy patients by shear wave elastography. Modern Problems of Science and Education. 2024; 5: 2024. https://science-education.ru/article/view?id=33646 doi: 10.17513/spno.33646 (In Russian)
49.
Review
For citations:
Madzhugin M.L., Bolotskov A.S., Firsov M.S., Dadayan A.R. Elastography of renal parenchyma in healthy patients (literature review). Medical Visualization. 2025;29(1):80-91. (In Russ.) https://doi.org/10.24835/1607-0763-1501