Preview

Медицинская визуализация

Расширенный поиск

Медицинская визуализация и искусственный интеллект при радиотерапии злокачественных опухолей

https://doi.org/10.24835/1607-0763-1500

Аннотация

Слияние искусственного интеллекта с медицинской визуализацией является, несомненно, прогрессивным новаторским процессом в современном развитии отечественного здравоохранении, позволяющим обеспечивать беспрецедентную точность и эффективность при диагностике и планировании специального лечения различных заболеваний, в том числе и злокачественных опухолей.

При этом подходы искусственного интеллекта, особенно в области клинического применения радиотерапевтических методик, распространяются все шире и переходят из сферы специализированных исследований в сферу уже принятой традиционной клинической практики.

Цель исследования: проанализировать подходы искусственного интеллекта в области клинического применения радиотерапевтических методик противоопухолевого лечения злокачественных опухолей.

Заключение. Дальнейшее развитие искусственного интеллекта предусматривает обеспечение вариантов профилактики, диагностики и лечения онкологических больных на фоне постоянного повышения точности в их реализации, в том числе и содействие в оптимизации радиотерапевтического лечения злокачественных новообразований.

Об авторах

Г. А. Паньшин
ФГБУ “Российский научный центр рентгенорадиологии” Минздрава России
Россия

Паньшин Георгий Александрович – доктор мед. наук, профессор, главный научный сотрудник лаборатории лучевой терапии и комплексных методов лечения онкологических заболеваний ФГБУ “Российский научный центр рентгенорадиологии” Минздрава России, Москва.
https://orcid.org/0000-0003-1106-6358
E-mail: g.a.panshin@mail.ru



Н. В. Нуднов
ФГБУ “Российский научный центр рентгенорадиологии” Минздрава России; ФГБОУ ДПО “Российская медицинская академия непрерывного профессионального образования” Минздрава России; ФГАОУ ВО “Российский университет дружбы народов имени Патриса Лумумбы” Минобрнауки России
Россия

Нуднов Николай Васильевич – доктор мед. наук, профессор, заместитель директора по научной работе, заведующий научно-исследовательским отделом комплексной диагностики заболеваний и радиотерапии ФГБУ “Российский научный центр рентгенорадиологии” Минздрава России; профессор кафедры рентгенологии и радиологии ФГБОУ ДПО “Российская медицинская академия непрерывного профессионального образования” Минздрава России;
заместитель директора по научной работе, профессор кафедры онкологии и рентгенорадиологии ФГАОУ ВО “Российский университет дружбы народов имени Патриса Лумумбы” Минобрнауки России, Москва.
https://orcid.org/0000-0001-5994-0468
E-mail: mailbox@rncrr.rssi.ru



Список литературы

1. NCCN Clinical Practice Guidelines in Oncology (2020) Available at https://www.nccn.org/professionals/physician_gls/default.aspx#site [Accessed on 05 May 2020].

2. Hussein M., Heyman B.J.M., Verellen D., Nisbet A. Automation of intensity modulated radiotherapy treatment planning – a review of recent innovations. Br. J. Radiol. 2018; 91: 20180270. http://doi.org/10.1259/bjr.20180270

3. Barragan-Montero A., Javaid U., Valdez G. et al. Artificial intelligence and machine learning for medical imaging: a review of technologies. Phys. Med. 2021; 83: 242–256. https://doi.org/10.1016/j.ejmp.2021.04.016

4. Price W.N. II. Regulating Black-Box Medicine. Mich. Law. Rev. 2017; 116 (3): 421–474. https://doi.org/10.36644/mlr.116.3.regulation

5. Byun H., Yu S., Oh J. et al. An Assistive Role of a Machine Learning Network in Diagnosis of Middle Ear Diseases. J. Clin. Med. 2021; 10 (15): 3198. http://doi.org/10.3390/jcm10153198

6. Hoo VS. Radiotherapeutic methods for prostate cancer, dose escalation and brachytherapy. Clin. Oncol. 2005; 17 (7): 560–571. http://doi.org/10.1016/J.CLON.2005.07.006

7. Liu Z., Liu X., Guan H. et al. Development and validation of a deep learning algorithm for auto-delineation of clinical target volume and organs at risk in cervical cancer radiotherapy. Radiother. Oncol. 2020; 153: 172–179. http://doi.org/10.1016/j.radonc.2020.09.060

8. Li X., Chen H., Qi X. et al. H-DenseUNet: Hybrid Densely Connected UNet for Liver and Tumor Segmentation From CT Volumes. IEEE Trans. Med. Imaging. 2018; 37 (12): 2663–2674. https://doi.org/10.48550/arXiv.1709.07330

9. Chen L., Bentley P., Mori K. et al. DRINet for Medical Image Segmentation. IEEE Transactions on Medical Imaging. 2018; 37 (11): 2453–2462. https://doi.org/10.1109/TMI.2018.2835303

10. Feng C.H., Cornell M., Moore K.L. et al. Automated contouring and planning pipeline for hippocampal-avoidant whole-brain radiotherapy. Radiat. Oncol. 2020; 15 (1): 251. https://doi.org/10.1186/s13014-020-01689-y

11. Pan Q., Zhao L., Gu S. et al. Deep learning-based automatic hippocampal detection from MRI: geometric and dosimetric evaluation. Radiat. Oncol. 2021; 16 (1): 12. https://doi.org/10.1186/s13014-020-01724-y

12. Tong N., Gou S., Yang S. et al. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks. Med. Phys. 2018; 45 (10): 4558–4567. https://doi.org/10.1002/mp.13147

13. Tong N., Gou S., Yang S. et al. Fully convolutional Dance Net with form restriction and competitive training of multi-organ segmentation on CT of the head and neck and MRI with a low field of view. Med. Phys. 2019; 46 (6): 2669–2682. https://doi.org/10.1002 /mp.13553

14. Nelms B.E., Tomé W.A., Robinson G., Wheeler J. Variations in the contouring of organs at risk: test case from a patient with oropharyngeal cancer. Int. J. Radiat. Oncol. Biol. Phys. 2012; 82 (1): 368–378. https://doi.org/10.1016/j.ijrobp.2010.10.019

15. Nemoto T., Futakami N., Yagi M. et al. Efficacy evaluation of 2D, 3D U-Net semantic segmentation and atlas-based segmentation of normal lungs excluding the trachea and main bronchi. J. Radiat. Res. 2020; 61 (2): 257–264. https://doi.org/10.1093/jrr/rrz086

16. Wong J., Huang V., Giambattista J.A. et al. Training and Validation of Deep Learning-Based Auto-Segmentation Models for Lung Stereotactic Ablative Radiotherapy Using Retrospective Radiotherapy Planning Contours. Front. Oncol. 2021; 11: 626499. https://doi.org/10.3389/fonc.2021.626499

17. Men K., Geng H., Biswas T. et al. Automated Quality Assurance of OAR Contouring for Lung Cancer Based on Segmentation With Deep Active Learning. Front. Oncol. 2020; 10: 986. https://doi.org/10.3389/fonc.2020.00986

18. Gu H., Gan W., Zhang Q. et al. A 2D-3D hybrid convolutional neural network for autosegmentation of lung lobes in standard-thickness computed tomography scans of patients receiving radiotherapy. Biomed. Eng. Online. 2021; 20 (1): 94. https://doi.org/10.1186/s12938-021-00932-1

19. Liu Z., Liu F., Chen W. et al. Automatic Segmentation of Clinical Target Volumes for Post-Modified Radical Mastectomy Radiotherapy Using Convolutional Neural Networks. Front. Oncol. 2021; 10: 581347. https://doi.org/10.3389/fonc.2020.581347

20. Choi M.S., Choi B.S., Chung S.Y. et al. Clinical evaluation of atlas- and deep learning-based automatic segmentation of multiple organs and clinical target volumes for breast cancer. Radiother. Oncol. 2020; 153: 139–145. https://doi.org/10.1016/j.radonc.2020.09.045

21. Xia X., Wang J., Li Y. et al. An Artificial Intelligence-Based Full-Process Solution for Radiotherapy: A Proof of Concept Study on Rectal Cancer. Front. Oncol. 2021; 10: 616721. https://doi.org/10.3389/fonc.2020.616721

22. Savenije M.H.F., Maspero M., Sikkes G.G. et al. Clinical implementation of MRI-based organs-at-risk auto-segmentation with convolutional networks for prostate radiotherapy. Radiat. Oncol. 2020; 15 (1): 104. https://doi.org/10.1186/s13014-020-01528-0

23. Sartor H., Minarik D., Enqvist O. et al. Auto-segmentations by convolutional neural network in cervical and anorectal cancer with clinical structure sets as the ground truth. Clin. Transl. Radiat. Oncol. 2020; 25: 37-45. https://doi.org/10.1016/j.ctro.2020.09.004

24. Cha E., Elguindi S., Onochie I. et al. Clinical implementation of deep learning contour autosegmentation for prostate radiotherapy. Radiother. Oncol. 2021; 159: 1–7. https://doi.org/10.1016/j.radonc.2021.02.040

25. Ma C.Y., Zhou J.Y., Xu X.T. et al. Deep learning-based auto-segmentation of clinical target volumes for radiotherapy treatment of cervical cancer. J. Appl. Clin. Med. Phys. 2022; 23 (2): e13470. https://doi.org/10.1002/acm2.13470

26. Byrne M., Archibald-Heeren B., Hu Y. et al. Varian ethos online adaptive radiotherapy for prostate cancer: Early results of contouring accuracy, treatment plan quality, and treatment time. J. Appl. Clin. Med. Phys. 2022; 23 (1): e13479. https://doi.org/10.1002/acm2.13479

27. Sibolt P., Andersson L.M., Calmels L. et al. Clinical implementation of artificial intelligence-driven cone-beam computed tomography-guided online adaptive radiotherapy in the pelvic region. Phys. Imaging Radiat. Oncol. 2020; 17: 1–7. https://doi.org/10.1016/j.phro.2020.12.004

28. Lawton C.A., Michalski J., El-Naqa I. et al. RTOG GU Radiation oncology specialists reach consensus on pelvic lymph node volumes for high-risk prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 2009; 74 (2): 383–387. https://doi.org/10.1016/j.ijrobp.2008.08.002

29. Choi M.S., Choi B.S., Chung S.Y. et al. Clinical evaluation of atlas- and deep learning-based automatic segmentation of multiple organs and clinical target volumes for breast cancer. Radiother. Oncol. 2020; 153: 139–145. https://doi.org/10.1016/j.radonc.2020.09.045

30. Liang F., Qian P., Suh. et al. An abdominal, multi-organ automatic design method for online adaptive radiotherapy under magnetic resonance control: an intelligent multi-level approach to fusion. Artif. Intel. Med. 2018; 90: 34–41. https://doi.org/10.1016/j.artmed.2018.07.001

31. Sartor H., Minarik D., Enqvist O. et al. Auto-segmentations by convolutional neural network in cervical and anorectal cancer with clinical structure sets as the ground truth. Clin. Transl. Radiat. Oncol. 2020; 25: 37–45. https://doi.org/10.1016/j.ctro.2020.09.004

32. Cha E., Elguindi S., Onochie I. et al. Clinical implementation of deep learning contour autosegmentation for prostate radiotherapy. Radiother. Oncol. 2021; 159: 1–7. https://doi.org/10.1016/j.radonc.2021.02.040

33. Ma C.Y., Zhou J.Y., Xu X.T. et al. Deep learning-based auto-segmentation of clinical target volumes for radiotherapy treatment of cervical cancer. J. Appl. Clin. Med. Phys. 2022; 23 (2): e13470. https://doi.org/10.1002/acm2.13470

34. Lin D., Lapen K., Sherer M.V. et al. A Systematic Review of Contouring Guidelines in Radiation Oncology: Analysis of Frequency, Methodology, and Delivery of Consensus Recommendations. Int. J. Radiat. Oncol. Biol. Phys. 2020; 107 (4): 827–835. https://doi.org/10.1016/j.ijrobp.2020.04.011

35. Ohno T., Wakatsuki M., Toita T. et al. The Working Group of the Gynecological Tumor Committee of the Japanese Radiation Oncology Study Group (JROSG). Recommendations for high-risk clinical target volume definition with computed tomography for three-dimensional image-guided brachytherapy in cervical cancer patients. J. Radiat. Res. 2017; 58 (3): 341–350. https://doi.org/10.1093/jrr/rrw109

36. Lee A.W., Ng W.T., Pan J.J. et al. International guideline for the delineation of the clinical target volumes (CTV) for nasopharyngeal carcinoma. Radiother. Oncol. 2018; 126 (1): 25–36. https://doi.org/10.1016/j.radonc. 2017.10.032

37. Robin S., Jolicoeur M., Palumbo S. et al. Prostate Bed Delineation Guidelines for Postoperative Radiation Therapy: On Behalf Of The Francophone Group of Urological Radiation Therapy. Int. J. Radiat. Oncol. Biol. Phys. 2021; 109 (5): 1243–1253. https://doi.org/10.1016/j.ijrobp.2020.11.010

38. Kaidar-Person O., Vrou Offersen B., Hol S. et al. ESTRO ACROP consensus guideline for target volume delineation in the setting of postmastectomy radiation therapy after implant-based immediate reconstruction for early stage breast cancer. Radiother. Oncol. 2019; 137: 159–166. https://doi.org/10.1016/j.radonc.2019.04.010

39. Niyazi M., Andratschke N., Bendszus M. et al. ESTRO-EANO guideline on target delineation and radiotherapy details for glioblastoma. Radiother. Oncol. 2023; 184: 109663. https://doi.org/10.1016/j.radonc.2023.109663

40. Small W. Jr., Bosch W.R., Harkenrider M.M. et al. NRG Oncology/RTOG Consensus Guidelines for Delineation of Clinical Target Volume for Intensity Modulated Pelvic Radiation Therapy in Postoperative Treatment of Endometrial and Cervical Cancer: An Update. Int. J. Radiat. Oncol. Biol. Phys. 2021; 109 (2): 413–424. https://doi.org/10.1016/j.ijrobp.2020.08.061

41. Iwai Y., Nemoto M.W., Horikoshi T. et al. Comparison of CT-based and MRI-based high-risk clinical target volumes in image guided-brachytherapy for cervical cancer, referencing recommendations from the Japanese Radiation Oncology Study Group (JROSG) and consensus statement guidelines from the Groupe Européen de Curiethérapie-European Society for Therapeutic Radiology and Oncology (GEC ESTRO). Jpn. J. Radiol. 2020; 38 (9): 899–905. https://doi.org/10.1007/s11604-020-00980-y

42. Damico N., Meyer J., Das P. et al. MECOG-ACRIN Guideline for Contouring and Treatment of Early Stage Anal Cancer Using IMRT/IGRT. Pract. Radiat. Oncol. 2022; 12 (4): 335–347. https://doi.org/10.1016/j.prro.2022.01.015.

43. Joskowicz L., Cohen D., Caplan N., Sosna J. Inter-observer variability of manual contour delineation of structures in CT. Eur. Radiol. 2019; 29 (3): 1391–1399. https://doi.org/10.1007/s00330-018-5695-5

44. Schipaanboord B., Boukerroui D., Peressutti D. et al. Can atlas-based auto-segmentation ever be perfect? Insights from extreme value theory. IEEE Trans. Med. Imaging. 2019; 38: 99–106. https://doi.org/10.1109/TMI.2018.2856464

45. Japanese Structure Survey of Radiation Oncology in 2019 (First Report). (2022/11/28. https://www.jastro.or.jp/medicalpersonnel/data_center/JASTRO_NSS_2019-01.pdf

46. Liu X., Li K.W., Yang R., Geng L.S. Review of Deep Learning Based Automatic Segmentation for Lung Cancer Radiotherapy. Front. Oncol. 2021; 11: 717039. https://doi.org/10.3389/fonc.2021.717039

47. Vrtovec T., Močnik D., Strojan P. et al. Auto-segmentation of organs at risk for head and neck radiotherapy planning: From atlas-based to deep learning methods. Med. Phys. 2020; 47 (9): e929–e950. https://doi.org/10.1002/mp.14320

48. Kneepkens E., Bakx N., van der Sangen M. et al. Clinical evaluation of two AI models for automated breast cancer plan generation. Radiat. Oncol. 2022; 17 (1): 25. https://doi.org/10.1186/s13014-022-01993-9

49. Li G., Wu X., Ma X. Artificial intelligence in radiotherapy. Semin. Cancer Biol. 2022; 86 (Pt 2): 160–171. https://doi.org/10.1016/j.semcancer.2022.08.005

50. Sumida I., Magome T., Kitamori H. et al. Deep convolutional neural network for reduction of contrast-enhanced region on CT images. J. Radiat. Res. 2019; 60 (5): 586–594. https://doi.org/10.1093/jrr/rrz030

51. Fh T., Cyw C., Eyw C. Radiomics AI prediction for head and neck squamous cell carcinoma (HNSCC) prognosis and recurrence with target volume approach. B.J.R. Open. 2021; 3 (1): 20200073. https://doi.org/10.1259/bjro.20200073

52. Bang C., Bernard G., Le W.T. et al. Artificial intelligence to predict outcomes of head and neck radiotherapy. Clin. Transl. Radiat. Oncol. 2023; 39: 100590. https://doi.org/10.1016/j.ctro.2023.100590

53. Liang Z.-G., Tan H.Q., Zhang F. et al. Comparison of radiomics tools for image analyses and clinical prediction in nasopharyngeal carcinoma. Br. J. Radiol. 2019; 92 (1102): 20190271. https://doi.org/10.1259/bjr.20190271

54. Chen N.-B., Xiong M., Zhou R. et al. CT radiomics-based longterm survival prediction for locally advanced non-small cell lung cancer patients treated with concurrent chemoradiotherapy using features from tumor and tumor organismal environment. Radiat. Oncol. 2022; 17 (1): 184. https://doi.org/10.1186/s13014-022-02136-w

55. Astaraki M., Wang C., Buizza G. et al. Early survival prediction in non-small cell lung cancer from PET/CT images using an intratumor partitioning method. Phys. Med. 2019; 60: 58–65. https://doi.org/10.1016/j.ejmp.2019.03.024

56. Zhang N., Liang R., Gensheimer M.F. et al. Early response evaluation using primary tumor and nodal imaging features to predict progression-free survival of locally advanced non-small cell lung cancer. Theranostics. 2020; 10: 11707–10718. https://doi.org/10.7150/thno.50565

57. Huang Z., Hu C., Chi C. et al. An Artificial Intelligence Model for Predicting 1-Year Survival of Bone Metastases in Non-Small-Cell Lung Cancer Patients Based on XGBoost Algorithm. Biomed. Res. Int. 2020; 2020: 3462363. https://doi.org/10.1155/2020/3462363

58. Du R., Lee V.H., Yuan H. et al. Radiomics Model to Predict Early Progression of Nonmetastatic Nasopharyngeal Carcinoma after Intensity Modulation Radiation Therapy: A Multicenter Study. Radiol. Artif. Intell. 2019; 1 (4): e180075. https://doi.org/10.1148/ryai.2019180075

59. De Felice F., Valentini V., De Vincentiis M. et al. Prediction of Recurrence by Machine Learning in Salivary Gland Cancer Patients After Adjuvant (Chemo)Radiotherapy. In Vivo (Athens, Greece). 2021; 35 (6): 3355–3360. https://doi.org/10.21873/invivo.12633

60. Lee S., Kerns S., Ostrer H. et al. Machine Learning on a Genome-wide Association Study to Predict Late Genitourinary Toxicity After Prostate Radiation Therapy. Int. J. Radiat. Oncol. Biol. Phys. 2018; 101 (1): 128–135. https://doi.org/10.1016/j.ijrobp.2018.01.054

61. Tian Z., Yen A., Zhou Z. et al. A machine-learning-based prediction model of fistula formation after interstitial brachytherapy for locally advanced gynecological malignancies. Brachytherapy. 2019; 18 (4): 530–538. https://doi.org/10.1016/j.brachy.2019.04.004

62. van Velzen S.G.M., Gal R., Teske A.J. et al. AI-Based Radiation Dose Quantification for Estimation of Heart Disease Risk in Breast Cancer Survivors After Radiation Therapy. Int. J. Radiat. Oncol. Biol. Phys. 2022; 112 (3): 621–632. https://doi.org/10.1016/j.ijrobp.2021.09.008

63. Tabl A.A., Alkhateeb A., ElMaraghy W. et al. A Machine Learning Approach for Identifying Gene Biomarkers Guiding the Treatment of Breast Cancer. Front. Genet. 2019; 10: 256. https://doi.org/10.3389/fgene.2019.00256

64. Ubaldi L., Valenti V., Borgese R.F. et al. Strategies to develop radiomics and machine learning models for lung cancer stage and histology prediction using small data samples. Phys. Med. 2021; 90: 13–22. https://doi.org/10.1016/j.ejmp.2021.08.015

65. Kawahara D., Murakami Y., Tani S., Nagata Y. A prediction model for degree of differentiation for resectable locally advanced esophageal squamous cell carcinoma based on CT images using radiomics and machine-learning. Br. J. Radiol. 2021; 94 (1124): 20210525. https://doi.org/10.1259/bjr.20210525

66. Lou B., Doken S., Zhuang T. et al. An image-based deep learning framework for individualising radiotherapy dose: a retrospective analysis of outcome prediction. Lancet Digit. Health. 2019; 1 (3): e136–e147. https://doi.org/10.1016/S2589-7500(19)30058-5

67. Wu S., Jiao Y., Zhang Y. et al. Imaging-Based Individualized Response Prediction Of Carbon Ion Radiotherapy For Prostate Cancer Patients. Cancer Manag. Res. 2019; 11: 9121–9131. https://doi.org/10.2147/CMAR.S214020

68. Haak H.E., Gao X., Maas M. et al. The use of deep learning on endoscopic images to assess the response of rectal cancer after chemoradiation. Surg. Endosc. 2022; 36 (5): 3592–3600. https://doi.org/10.1007/s00464-021-08685-7

69. Osman S.O.S., Leijenaar R.T.H., Cole A.J. et al. Computed Tomography-based Radiomics for Risk Stratification in Prostate Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2019; 105 (2): 448–456. https://doi.org/10.1016/j.ijrobp.2019.06.2504

70. Yang Z., Olshevsky D., He K. et al. Machine learning and statistical prediction of the quality of life of patients after prostate radiation therapy. Comput. Biol. Med. 2021; 129: 104127. https://doi.org/10.1016/j.compbiomed.2020.104127

71. Kawamura M., Kamomae T., Yanagawa M. et al. Revolutionizing radiation therapy: the role of AI in clinical practice. J. Radiat. Res. 2024; 65 (1): 1–9. https://doi.org/10.1093/jrr/rrad090

72. Shin J., Seo N., Baek S.-E. et al. MRI radiomics model predicts pathologic complete response of rectal cancer following chemoradiotherapy. Radiology. 2022; 303: 351–358. https://doi.org/10.1148/radiol.211986

73. Shaish H., Aukerman A., Vanguri R. et al. Radiomics of MRI for pretreatment prediction of pathologic complete response, tumor regression grade, and neoadjuvant rectal score in patients with locally advanced rectal cancer undergoing neoadjuvant chemoradiation: an international multicenter study. Eur. Radiol. 2020; 30: 6263–6273. https://doi.org/10.1007/s00330-020-06968-6

74. Cui Y., Yang X., Shi Z. et al. Radiomics analysis of multiparametric MRI for prediction of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Eur. Radiol. 2019; 29: 1211–1220. https://doi.org/10.1007/s00330-018-5683-9

75. Thompson R.F., Valdes G., Fuller C.D. et al. Artificial intelligence in radiation oncology: A specialty-wide disruptive transformation? Radiother. Oncol. 2018; 129 (3): 421–426. https://doi.org/10.1016/j.radonc.2018.05.030

76. Smith M.J., Bean S. AI and Ethics in Medical Radiation Sciences. J. Med. Imaging Radiat. Sci. 2019; 50 (4, Suppl. 2): S24–S26. https://doi.org/10.1016/j.jmir.2019.08.005


Рецензия

Для цитирования:


Паньшин Г.А., Нуднов Н.В. Медицинская визуализация и искусственный интеллект при радиотерапии злокачественных опухолей. Медицинская визуализация. 2025;29(2):116-126. https://doi.org/10.24835/1607-0763-1500

For citation:


Panshin G.A., Nudnov N.V. Medical imaging and artificial intelligence in radiotherapy of malignant tumors. Medical Visualization. 2025;29(2):116-126. (In Russ.) https://doi.org/10.24835/1607-0763-1500

Просмотров: 144


ISSN 1607-0763 (Print)
ISSN 2408-9516 (Online)