Diagnostic imaging for oligo metastatic disease. General questions (a brief review of the literature)
https://doi.org/10.24835/1607-0763-1462
Abstract
Brief Summary. Visualization of oligometastatic disease (OMD) is a complex diagnostic task, since it requires determining the exact loco-regional stage of cancer and assessing the condition of the patient's entire body in terms of possible detection of polymetastatic condition in the form of detection of disseminated metastases. Given this circumstance, quite often a combination of visualization methods is required.
Purpose of the study: to analyze the possibilities of modern diagnostic imaging methods for oligo metastatic disease and determine the further directions of their development.
Conclusion. Diagnostic imaging is extremely important in the implementation of standard methods of modern antitumor treatment (assessment of the response to special treatment of solid tumors using computed tomography, magnetic resonance imaging and bone scintigraphy), as well as advanced imaging methods (functional, metabolic and radionuclide targeting) to identify and dynamically monitor patients with oligometastatic disease.
About the Authors
N. V. NudnovRussian Federation
Nikolay V. Nudnov – Doct. of Sci. (Med.), Professor, Deputy Director for Scientific Work, Head of the Research Department for Complex Diagnostics of Diseases and Radiotherapy, Russian Scientific Center of Roentgenoradiology of the Ministry of Healthcare of the Russian Federation;
Professor, Department of Roentgenoradiology and Radiology, Russian Medical Academy of Continuous Professional Education of the Ministry of Healthcare of the Russian Federation;
Professor, Department of Oncology and Radiology, Peoples' Friendship University of Russia named after Patrice Lumumba of the Ministry of Science and Higher Education of the Russian Federation, Moscow.
https://orcid.org/0000-0001-5994-0468
E-mail: mailbox@rncrr.rssi.ru
G. A. Panshin
Russian Federation
Georgy A. Panshin – Doct. of Sci. (Med.), Professor, Chief Researcher of the Laboratory of Radiation Therapy and Integrated Methods of Treatment of Cancer Diseases, Research Department of Integrated Disease Diagnostics and Radiotherapy, Russian Scientific Center of Roentgenoradiology.
https://orcid.org/0000-0003-1106-6358. E-mail: g.a.panshin@mail.ru
References
1. Panshin G.A. The Role of Remote Stereotactic Body Radiation Therapy in Oligometastatic Disease (General Issues). Voprosy Onkologii. 2023; 69 (4): 599–604. https://doi.org/10.37469/0507-3758-2023-69-4-599-604 (In Russian)
2. Dzhabarov F.R., Alnikin A.B., Tolmachev V.G. Oligometastatic prostate cancer: diagnosis and preliminary results of radiation therapy. Urology Herald. 2020; 8 (2): 55–66. https://doi.org/10.21886/2308-6424-2020-8-2-55-66 (In Russian)
3. Salama J.K., Hasselle M.D., Chmura S.J. et al. Stereotactic body radiotherapy for multisite extracranial oligometastases. Cancer. 2012; 118: 2962–2970. https://doi.org/10.1002/cncr.26611
4. Rini B.I., Dorff T.B., Elson P. et al. Active surveillance in metastatic renalcell carcinoma: A prospective, phase 2 trial. Lancet Oncol. 2016; 17: 1317–1324. https://doi.org/10.1016/S1470-2045(16)30196-6
5. Hellman S., Weichselbaum R.R. Oligometastases. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 1995; 13: 8–10. https://doi.org/10.1200/JCO.1995.13.1.8
6. De Ruysscher D., Wanders R., van Baardwijk A. et al. Radical treatment of non-small-cell lung cancer patients with synchronous oligometastases: long-term results of a prospective phase II trial (Nct01282450). J. Thorac. Oncol. 2012; 7 (10): 1547–1555. https://doi.org/10.1097/JTO.0b013e318262caf6
7. Andrews D.W., Scott C.B., Sperduto P.W. et al. Whole brain radiation therapy with or without stereotactic radiosurgery boost for patients with one to three brain metastases: phase III results of the RTOG 9508 randomised trial. Lancet. 2004; 363 (9422): 1665–1672. https://doi.org/10.1016/S0140-6736(04)16250-8
8. Guckenberger M., Lievens Y., Bouma A.B. et al. Characterisation and classification of oligometastatic disease: a European Society for Radiotherapy and Oncology and European Organisation for Research and Treatment of Cancer consensus recommendation. Lancet Oncol. 2020; 21 (1): e18–e28. https://doi.org/10.1016/S1470-2045(19)30718-1
9. Alekseev B.Ya., Nyushko K.M., Krasheninnikov A.A. et al. Methods for the diagnosis and treatment of oligometastases in patients with prostate cancer and progressive disease after radical treatment. Cancer Urology. 2016; 12 (2): 64–73. https://doi.org/10.17650/1726-9776-2016-12-2-64-73 (In Russian)
10. Gombolevsky V.A., Kharlamov K.A., Masri A.G. et al. General recommendations for the description of primary and repeated CT, MRI, and X-ray studies / Series “Best Practices in Radiation and Instrumental Diagnostics”. Issue 2. Moscow, 2027. 20 p. (In Russian)
11. deSouza N.M., Liu Y., Chiti A. et al. Strategies and technical challenges for imaging oligometastatic disease: Recommendations from the European Organisation for Research and Treatment of Cancer imaging group. Eur. J. Cancer. 2018; 91: 153–163. https://doi.org/10.1016/j.ejca.2017.12.012
12. Ruf J., Schiefer J., Furth C. et al. 68Ga-DOTATOC PET/CT of neuroendocrine tumors: Spotlight on the CT phases of a triple-phase protocol. J. Nucl. Med. 2011; 52: 697–704. https://doi.org/10.2967/jnumed.110.083741
13. Park H.J., Kim H.J., Kim K.W. et al: Comparison between neuroendocrine carcinomas and well-differentiated neuroendocrine tumors of the pancreas using dynamic enhanced CT. Eur. Radiol. 2020; 30: 4772–4782. https://doi.org/10.1007/s00330-020-06867-w
14. Howe J.R., Cardona K., Fraker D.L. et al. The surgical management of small bowel neuroendocrine tumors: Consensus guidelines of the North American neuroendocrine tumor society. Pancreas. 2017; 46: 715–731. https://doi.org/10.1097/MPA.0000000000000846
15. Sundin A. Radiological and nuclear medicine imaging of gastroenteropancreatic neuroendocrine tumours. Best Pract. Res. Clin. Gastroenterol. 2012; 26: 803–818. https://doi.org/10.1016/j.bpg.2012.12.004
16. Raptopoulos V.D., Blake S.P., Weisinger K. Multiphase contrastenhanced helical CT of liver metastases from renal cell carcinoma. Eur. Radiol. 2001; 11: 2504–2509. https://doi.org/10.1007/s003300100853
17. O'Sullivan G.J., Carty F.L., Cronin C.G. Imaging of bone metastasis: An update. Wld J. Radiol. 2015; 7: 202–211. https://doi.org/10.4329/wjr.v7.i8.202
18. Talbot J.N., Paycha F., Balogova S. Diagnosis of bone metastasis: Recent comparative studies of imaging modalities. Q. J. Nucl. Med. Mol. Imaging. 2011; 55: 374–410. PMID: 21738113
19. Yang H.-L., Liu T., Wang X.-M. Diagnosis of bone metastases: A metaanalysis comparing 18FDG PET, CT, MRI and bone scintigraphy. Eur. Radiol. 2011; 21: 2604–2617. https://doi.org/10.1007/s00330-011-2221-4
20. O'Sullivan G.J., Carty F.L., Cronin C.G. Imaging of bone metastasis: An update. Wld J. Radiol. 2015; 7 (8): 202–211. https://doi.org/10.4329/wjr.v7.i8.202
21. Liu B., Gao S., Li S. A Comprehensive Comparison of CT, MRI, Positron Emission Tomography or Positron Emission Tomography/CT, and Diffusion Weighted Imaging-MRI for Detecting the Lymph Nodes Metastases in Patients with Cervical Cancer: A Meta-Analysis Based on 67 Studies. Gynecol. Obstet. Invest. 2017; 82 (3): 209–222. https://doi.org/10.1159/000456006
22. Ramalho J., Semelka R.C., Ramalho M. Gadolinium-based contrast agent accumulation and toxicity: An update. Am. J. Neuroradiol. 2016; 37: 1192–1198. https://doi.org/10.3174/ajnr.A4615
23. McDonald R.J., Levine D., Weinreb J. et al. Gadolinium retention: A research roadmap from the 2018 NIH/ACR/RSNA workshop on gadolinium chelates. Radiology. 2018; 289: 517–534.
24. Padhani A.R., Liu G., Koh D.M. et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: Consensus and recommendations. Neoplasia. 2009; 11: 102–125. https://doi.org/10.1593/neo.81328
25. Tsao J. Ultrafast imaging: principles, pitfalls, solutions, and applications. J. Magn. Reson. Imaging. 2010; 32: 252–266. https://doi.org/10.1002/jmri.22239
26. Expert Panel on Radiation Oncology-Brain Metastases / Lo S.S., Gore E.M., Bradley J.D., Buatti J.M. et al. ACR Appropriateness Criteria® pre-irradiation evaluation and management of brain metastases. J. Palliat. Med. 2014; 17 (8): 880–886. https://doi.org/10.1089/jpm.2014.9417
27. Morrow M., Waters J., Morris E. MRI for breast cancer screening, diagnosis, and treatment. Lancet. 2011; 378 (9805): 1804–1811. https://doi.org/10.1016/S0140-6736(11)61350-0
28. Zwittag P., Asel C., Gabriel M. et al. MRI and PET/CT in the assessment of lymph node metastases in head and neck cancer. Sci. Rep. 2023; 13 (1): 19347. https://doi.org/10.1038/s41598-023-46845-y
29. Mizukami Y., Ueda S., Mizumoto A. et al. Diffusion-weighted magnetic resonance imaging for detection of colorectal cancer lymph node metastases. Wld J. Surg. 2011; 35: 895–899. https://doi.org/10.1007/s00268-011-0986-x
30. Chong A., Hwang I., Ha J.M. et al. Application of bone scans for prostate cancer staging: Which guideline shows better result? Can. Urol. Assoc. J. 2014; 8 (7–8): E515–519. https://doi.org/10.5489/cuaj.2054
31. Van den Wyngaert T., Strobel K., Kampen W.U. et al. Practical recommendations of EANM for bone scintigraphy. Euro. J. Nucl. Honey. Mol. Visualization. 2016; 43: 1723–1738. https://doi.org/10.1007/s00259-016-3415-4
32. Izmailov T., Ryzhkin S., Borshchev G., Boichuk S. Oligometastatic Disease (OMD): The Classification and Practical Review of Prospective Trials. Cancers. 2023, 15 (21), 5234. https://doi.org/10.3390/cancers15215234
33. Cook G.J.R., Goh V. Molecular Imaging of Bone Metastases and Their Response to Therapy. J. Nucl. Med. 2020; 61 (6): 799–806. https://doi.org/10.2967/jnumed.119.234260
34. Hicks R.J., Roselt P.J., Kallur K.G. et al. FAPI PET/CT: will it end the hegemony of (18)F-FDG in oncology? J. Nucl. Honey. 2021; 62: 296–302. https://doi.org/10.2967/jnumed.120.256271
35. Kahle J., Ceci F., Eiber M. et al. (18)F-fluciclovine PET-CT and (68)Ga-PSMA-11 PET-CT in patients with early biochemical recurrence after prostatectomy: a prospective, single-center, single-arm comparative imaging study. Lancet Oncol. 2019; 20: 1286–1294. https://doi.org/10.1016/S1470-2045(19)30415-2
36. McConathy J. 18F-Fluciclovine (FACBC) and Its Potential Use for Breast Cancer Imaging. J. Nucl. Med. 2016; 57 (9): 1329–1330. https://doi.org/10.2967/jnumed.116.175489
37. Durante S., Dunet V., Gorostidi F. et al. Head and neck tumors angiogenesis imaging with 68Ga-NODAGA-RGD in comparison to 18F-FDG PET/CT: a pilot study. EJNMMI Res. 2020; 10 (1): 47. https://doi.org/10.1186/s13550-020-00638-w.
38. Farwell M.D., Gamache R.F., Babazada H. et al. PET imaging targeting CD8 tumor-infiltrating T cells in patients with cancer: a first-in-human phase I study of (89)Zr-Df-IAB22M2C, a radiolabeled anti-CD8 mini-antibody. J. Nucl. Med. 2022; 63 (5) 720–726. https://doi.org/10.2967/jnumed.121.262485
39. Fernández M, Javaid F, Chudasama V. Advances in targeting the folate receptor in the treatment/imaging of cancers. Chem. Sci. 2017; 9 (4): 790–810. https://doi.org/10.1039/c7sc04004k
40. Boss S.D., Ametami S.M. Development of folate receptor-targeted PET radiopharmaceuticals for tumor imaging – from bench to bedside. Cancer. 2020; 12 (6): 1508. https://doi.org/10.3390/cancers12061508
41. Gnessin S., Müller J., Burger I.A. et al. Radiation dosimetry of (18)F-AzaFol: first use of a PET tracer of the folic acid receptor in humans. EJNMMI Res. 2020; 10 (1): 32. https://doi.org/10.1186/s13550-020-00624-2
42. Bray F., Ferlay J., Soerjomataram I. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018; 68 (6): 394–424. https://doi.org/10.3322/caac.21492. Erratum in: CA Cancer J. Clin. 2020; 70 (4): 313. https://doi.org/10.3322/caac.21492
43. Viale P.H. The American Cancer Society's Facts & Figures: 2020 Edition. J. Advanced Pract. Oncol. 2020; 11 (2): 135–136. https://doi.org/10.6004/jadpro.2020.11.2.1
Review
For citations:
Nudnov N.V., Panshin G.A. Diagnostic imaging for oligo metastatic disease. General questions (a brief review of the literature). Medical Visualization. 2024;28(4):142-153. (In Russ.) https://doi.org/10.24835/1607-0763-1462