Medical visualization in pregnancy: indications, limitations and prospects
https://doi.org/10.24835/1607-0763-1408
Abstract
The present paper reports available modern data about the safety of medical visualization, including US, MRI, CT, PET and scintigraphy. In all accessed papers, objects are pregnant women and fetuses – the most vulnerable of all groups of patients. We summarize data concerning exposure to radiodiagnostic procedures during pregnancy and approaches to diminish the potential risk. We analyzed articles published between 2003 and 2023 using PubMed and Google Scholar. Keywords included: MR-safety, pregnancy, CT, MRI, US, scintigraphy. The list of found articles consisted of more the 2000 items. We analyzed more than 100 articles in Russian and English and included 63 items in the current review. Primarily we dealt with clinical guidelines based on randomized trials on the safety of radiological methods during pregnancy. Hopefully, presented information, including the latest international recommendations, will help clinicians and patients pursue realistic and informed approaches and minimize anxiety.
Keywords
About the Authors
E. A. PavlovskayaRussian Federation
Evgenia A. Pavlovskaya – Cand. of Sci. (Med.), radiologist MRI-specialist, N.N. Petrov National Medical Research Center of Oncology, St. Petersburg
Sergey S. Bagnenko
Sergey S. Bagnenko – Doct. of Sci. (Med.), Deputy Director and Head of the Department of Diagnostic and Interventional Radiology, N.N. Petrov National Medical Research Center of Oncology; Professor of St. Petersburg State Pediatric Medical University, St. Petersburg
Ilya A. Burovik
Ilya A. Burovik – Cand. of Sci. (Med.), Head of radiology department, N.N. Petrov National Medical Research Center of Oncology; assistant professor in the department of oncology of SaintPetersburg University, St. Petersburg
Ekaterina A. Busko
Ekaterina A. Busko – Doct. of Sci. (Med.), breast radiologist, leading researcher in Department of Diagnostic and Interventional Radiology, N.N. Petrov National Medical Research Center of Oncology; associate professor in clinical and educational center “Radiology and Nuclear medicine” of SaintPetersburg University, St. Petersburg
Stanislav A. Tiatkov
Stanislav A. Tiatkov – M.D. radiologist, MRI-specialist, N.N. Petrov National Medical Research Center of Oncology; Professor of St. Petersburg State Pediatric Medical University, St. Petersburg
Pavel Yu. Grishko
Pavel Yu. Grishko – Cand. of Sci. (Med.), radiologist, researcher, MRI-specialist, N.N. Petrov National Medical Research Center of Oncology; Professor of St. Petersburg State Pediatric Medical University, St. Petersburg
Igor V. Berlev
Igor V. Berlev – Doct. of Sci. (Med.), Head of the scientific oncology and surgical gynecology department, N.N. Petrov National Medical Research Center of Oncology; Professor, Head of the obstetrics and gynecology department, I.I. Mechnikov NorthWestern State Medical University, St. Petersburg
References
1. Trofimova T.N., Halikov A.D., Semenova M.D. The capabilities of MRI in studying formation of the fetal brain. Diagnostic Radiology and Radiotherapy. 2017; 4 (8): 6–16. https://doi.org/10.22328/2079-5343-2017-4-6-15 (In Russian)
2. Amant F., Berveiller P., Boere I.A. et al. Gynecologic cancers in pregnancy: guidelines based on a third international consensus meeting. Ann. Oncol. 2019; 30 (10): 1601–1612. https://doi.org/10.1093/annonc/mdz228
3. Parpinel G., Laudani M.E., Giunta F.P. et al. Use of positron emission tomography for pregnancy-associated cancer assessment: a review. J. Clin. Med. 2022; 11 (13): 1–11. https://doi.org/10.3390/jcm11133820
4. de Haan J., Verheecke M., Van Calsteren K. et al. Oncological management and obstetric and neonatal outcomes for women diagnosed with cancer during pregnancy: a 20-year international cohort study of 1170 patients. Lancet Oncol. 2018; 19 (3): 337–346. https://doi.org/10.1016/S1470-2045(18)30059-7
5. Abramowicz J.S., Kremkau F.W., Merz E. Obstetrical ultrasound: can the fetus hear the wave and feel the heat? Ultraschall Med. 2012; 33 (3): 215–217. https://doi.org/10.1055/s-0032-1312759
6. Aiken C.E., Lees C.C. Long-term effects of in utero Doppler ultrasound scanning-a developmental programming perspective. Med. Hypotheses. 2012; 78 (4): 539–541. https://doi.org/10.1016/j.mehy.2012.01.030
7. Tirada N., Dreizin D., Khati N.J. et al. Imaging pregnant and lactating patients. RadioGraphics. 2015; 35 (6): 1751–1765. https://doi.org/10.1148/rg.2015150031
8. Wei K., Mulvagh S.L., Carson L. et al. The safety of definity and optison for ultrasound image enhancement: a retrospective analysis of 78,383 administered contrast doses. J. Am. Soc. Echocardiogr. 2008; 21 (11): 1202–1206. https://doi.org/10.1016/j.echo.2008.07.019
9. Piscaglia F., Bolondi L., Italian Society for Ultrasound in Medicine and Biology (SIUMB) study group on ultrasound contrast agents. The safety of Sonovue in abdominal applications: retrospective analysis of 23188 investigations. Ultrasound Med. Biol. 2006; 32 (9): 1369–1375. https://doi.org/10.1016/j.ultrasmedbio.2006.05.031
10. Sidhu P.S., Cantisani V., Dietrich C.F. et al. The EFSUMB guidelines and recommendations for the clinical practice of contrast-enhanced ultrasound (CEUS) in non-hepatic applications: update 2017 (Long Version). Ultraschall Med. 2018; 39 (2): e2–e44. https://doi.org/10.1055/a-0586-1107
11. Perelli F., Turrini I., Giorgi M.G. et al. Contrast agents during pregnancy: pros and cons when really needed. Int. J. Environ. Res. Public Health. 2022; 19 (24): 16699. https://doi.org/10.3390/ijerph192416699
12. Kanal E., Barkovich A.J., Bell C. et al.; ACR Blue Ribbon Panel on MR Safety. ACR guidance document for safe MR practices: 2007; Am. J. Roentgenol. 2007. 188 (6): 1447–1474. https://doi.org/10.2214/AJR.06.1616
13. Hartwig V., Giovannetti G., Vanello N. et al. Biological effects and safety in magnetic resonance imaging: a review. Int. J. Environ. Res. Public Health. 2009; 6 (6): 1778–1798. https://doi.org/10.3390/ijerph6061778
14. Chartier A.L., Bouvier M.J., McPherson D.R. et al. The safety of maternal and fetal MRI at 3T. Am. J. Roentgenol. 2019; 213 (5): 1170–1173. https://doi.org/10.2214/AJR.19.21400
15. Ray J.G., Vermeulen M.J., Bharatha A. et al. Association between MRI exposure during pregnancy and fetal and childhood outcomes. JAMA. 2016; 316 (9): 952–961. https://doi.org/10.1001/jama.2016.12126
16. Gomes M., Matias A., Macedo F. Risks to the fetus from diagnostic imaging during pregnancy: review and proposal of a clinical protocol. Pediatr. Radiol. 2015; 45 (13): 1916–1929. https://doi.org/10.1007/s00247-015-3403-z
17. Mervak B.M., Altun E., McGinty K.A. et al. MRI in pregnancy: Indications and practical considerations. J. Magn. Reson. Imaging. 2019; 49 (3): 621–631. https://doi.org/10.1002/jmri.26317
18. Sinitcin V.E. MRI safety – current state of the issue. Diagnostic and Interventional Radiology. 2010; 4 (3): 61–66. https://doi.org/10.25512/DIR.2010.04.3.10 (In Russian)
19. Behzadi A.H., Zhao Y., Farooq Z., Prince M.R. Immediate allergic reactions to gadolinium-based contrast agents: a systematic review and meta-analysis. Radiology. 2018; 286 (2): 471–482. https://doi.org/10.1148/radiol.2017162740
20. Fraum T.J., Ludwig D.R., Bashir M.R., Fowler K.J. Gadolinium-based contrast agents: a comprehensive risk assessment. J. Magn. Reson. Imaging. 2017; 46 (2): 338–353. https://doi.org/10.1002/jmri.25625
21. Cheong B.Y.C., Wilson J.M., Preventza O.A., Muthupillai R. Gadolinium-based contrast agents: updates and answers to typical questions regarding gadolinium use. Tex. Heart Inst. J. 2022; 49 (3): e217680. https://doi.org/10.14503/THIJ-21-7680
22. Potts J., Lisonkova S., Murphy D.T., Lim K. Gadolinium magnetic resonance imaging during pregnancy associated with adverse neonatal and post-neonatal outcomes. J. Pediatr. 2017; 180: 291–294. https://doi.org/10.1016/j.jpeds.2016.10.061
23. Costello J.R., Kalb B., Martin D.R. Incidence and risk factors for gadolinium-based contrast agent immediate reactions. Top. Magn. Reson. Imaging. 2016; 25 (6): 257–263. https://doi.org/10.1097/RMR.0000000000000109
24. Cowper S.E., Boyer P.J. Nephrogenic systemic fibrosis: An update. Curr. Rheumatol. Rep. 2006; 8 (2): 151–157. https://doi.org/10.1007/s11926-006-0056-9
25. Kanal E., Tweedle M.F. Residual or retained gadolinium: practical implications for radiologists and our patients. Radiology. 2015; 275 (3): 630–634. https://doi.org/10.1148/radiol.2015150805
26. Kodzwa R. ACR manual on contrast media: 2018 updates. Radiol. Technol. 2019; 91 (1): 97–100.
27. De Santis M., Straface G., Cavaliere A.F. et al. Gadolinium periconceptional exposure: pregnancy and neonatal outcome. Acta Obstet. Gynecol. Scand. 2007; 86 (1): 99–101. https://doi.org/10.1080/00016340600804639
28. Thomsen H.S. ESUR guidelines on contrast agents version 10.0. Contrast Media Safety Committee, 2018; 44 p.
29. Gatta G., Di Grezia G., Cuccurullo V. et al. MRI in pregnancy and precision medicine: a review from literature. J. Pers. Med. 2021; 12 (1): 1–16. https://doi.org/10.3390/jpm12010009
30. Ghaghada K.B., Starosolski Z.A., Bhayana S. et al. Pre-clinical evaluation of a nanoparticle-based blood-pool contrast agent for MR imaging of the placenta. Placenta. 2017; 57: 60–70. https://doi.org/10.1016/j.placenta.2017.06.008
31. Semenova E.S., Maschenko I.A., Trufanov G.E. et al. Magnetic resonance imaging during pregnancy: current safety issues. REJR. 2020; 10 (1): 216–230. https://doi.org/10.21569/2222-7415-2020-10-1-216-230 (In Russian)
32. Ratnapalan S., Bentur Y., Koren G. Doctor, will that x-ray harm my unborn child? CMAJ. 2008; 179 (12): 1293–1296. https://doi.org/10.1503/cmaj.080247
33. Brent R.L. Protection of the gametes embryo/fetus from prenatal radiation exposure. Health Physics. 2015; 108 (2): 242–274. https://doi.org/10.1097/HP.0000000000000235
34. Sanitary rules and norms. Norms of radiation safety (NRB–99/2009): sanitary and epidemioologic rules and standards. Moscow – Federal center of hygiene and epidemiology of the Federal office for inspectorate of customers and human well-being protection. 2009. 100 p. (In Russian)
35. ACR-SPR practice parameter for imaging pregnant or potentially pregnant adolescents and women with ionizing radiation [Electronic resource]. URL: https://www.acr.org/Clinical-Resources/Radiology-Safety/Radiation-Safety (accessed: 05.03.2023).
36. Recommendations of the International Commission on Radiological Protection (ICRP) publication 103: Translation / Eds by Kiselev M.F., Shandali N.K. Moscow: “Alana” publishing, 2009. 344 p. (In Russian)
37. Krylov A.S., Narkevich B.Y., Ryzhov A.D. Evaluation of the radiation dose of an embryo/fetus during lymphoscintigraphy (sentinel lymph node mapping) in pregnant patients with breast cancer. Journal of Oncology: Diagnostic Radiology and Radiotherapy. 2021; 4 (4): 78–87. https://doi.org/10.37174/2587-7593-2021-4-4-78-87 (In Russian)
38. Raman S.P., Johnson P.T., Deshmukh S. et al. CT dose reduction applications: available tools on the latest generation of CT scanners. J. Am. Coll. Radiol. 2013. 10 (1): 37–41. https://doi.org/10.1016/j.jacr.2012.06.025
39. Colletti P.M., Micheli O.A., Lee K.H. To shield or not to shield: application of bismuth breast shields. Am. J. Roentgenol. 2013; 200 (3): 503–507. https://doi.org/10.2214/AJR.12.9997
40. Kondrashov I.A., Mandal V. Nonionic Low-Osmolar Monomeric Iodinated Contrast Material: Some Aspects of use for Computed Tomography in Children. Medical Visualization. 2017; 6: 118–129. https://doi.org/10.24835/1607-0763-2017-6-118-129 (In Russian)
41. Webb J.A., Thomsen H.S., Morcos S.K; Members of Contrast Media Safety Committee of European Society of Urogenital Radiology (ESUR). The use of iodinated and gadolinium contrast media during pregnancy and lactation. Eur. Radiol. 2005; 15 (6): 1234–1240. https://doi.org/10.1007/s00330-004-2583-y
42. Rajaram S., Exley C.E., Fairlie F., Matthews S. Effect of antenatal iodinated contrast agent on neonatal thyroid function. Br. J. Radiol. 2012; 85 (1015): e238–e242. https://doi.org/10.1259/bjr/29806327
43. Kochi M.H., Kaloudis E.V., Ahmed W., Moore W.H. Effect of in utero exposure of iodinated intravenous contrast on neonatal thyroid function. J. Comput. Assist. Tomogr. 2012; 36 (2): 165–169. https://doi.org/10.1097/rct.0b013e31824cc048
44. Zinoviev A.N., Motovilova T.M., Kachalina T.S. The role of quantitative assessment of tubal insufflation in tubal type of infertility prognosis. RMJ. Mother and Child. 2013; 21 (12): 760. (In Russian)
45. American College of Radiology. Manual on contrast media, version 10.2; American College of Radiology: Reston, VA, USA, 2023. 148 p.
46. Wang P.I., Chong S.T., Kielar A.Z. et al. Imaging of pregnant and lactating patients: part 2, evidence-based review and recommendations. Am. J. Roentgenol. 2012; 198 (4): 785–792. https://doi.org/10.2214/AJR.11.8223
47. Despierres M., Boudy A.S., Selleret L. et al. Feasibility, safety and impact of (18F)-FDG PET/CT in patients with pregnancy-associated cancer: experience of the French CALG (Cancer Associé à La Grossesse) network. Acta Oncol. 2022; 61 (3): 302–308. https://doi.org/10.1080/0284186X.2021.2004323
48. Zanotti-Fregonara P., Champion C., Trébossen R. et al. Estimation of the beta+ dose to the embryo resulting from 18F-FDG administration during early pregnancy. J. Nucl. Med. 2008; 49 (4): 679–682. https://doi.org/10.2967/jnumed.107.048900
49. Benveniste H., Fowler J.S., Rooney W.D. et al. Maternal-fetal in vivo imaging: a combined PET and MRI study. J. Nucl. Med. 2003; 44 (9): 1522–1530.
50. Zanotti-Fregonara P., Ishiguro T., Yoshihara K. et al. 18F-FDG fetal dosimetry calculated with PET/MRI. J. Nucl. Med. 2022; 63 (10): 1592–1597. https://doi.org/10.2967/jnumed.121.263561
51. Gropper A.B., Calvillo K.Z., Dominici L. et al. Sentinel lymph node biopsy in pregnant women with breast cancer. Ann. Surg. Oncol. 2014; 21 (8): 2506–2511. https://doi.org/10.1245/s10434-014-3718-2
52. Han S.N., Amant F., Cardonick E.H. et al. Axillary staging for breast cancer during pregnancy: feasibility and safety of sentinel lymph node biopsy. Breast Cancer Res. Treat. 2018; 168 (2): 551–557. https://doi.org/10.1007/s10549-017-4611-z
53. Han S.N., Amant F., Michielsen K. et al. Feasibility of whole-body diffusion-weighted MRI for detection of primary tumour, nodal and distant metastases in women with cancer during pregnancy: a pilot study. Eur. Radiol. 2018; 28 (5): 1862–1874. https://doi.org/10.1007/s00330-017-5126-z
Supplementary files
Review
For citations:
Pavlovskaya E.A., Bagnenko S.S., Burovik I.A., Busko E.A., Tiatkov S.A., Grishko P.Yu., Berlev I.V. Medical visualization in pregnancy: indications, limitations and prospects. Medical Visualization. 2024;28(2):95-107. (In Russ.) https://doi.org/10.24835/1607-0763-1408