Preview

Medical Visualization

Advanced search

Modern methods of echocardiographic assessment of the functional status of the left atrium in atrial fibrillation

https://doi.org/10.24835/1607-0763-1360

Abstract

Atrial fibrillation (AF) is the most common cardiac arrhythmia, accompanied by significant morbidity and mortality among the entire population. In AF, it is the left atrium (LA) that is considered as a critical indicator of the development of adverse cardiovascular events. LA dilation followed by electrophysiological remodeling is a frequent observation in patients with AF.

Thus, echocardiography (EchoCG) is of particular interest, in particular, the use of two-dimensional and threedimensional Speckle tracking echocardiography (STE) to study the morphofunctional state of LA at the patient's bedside.

Currently, several major lecture reviews on echocardiographic assessment of LA function are presented in the domestic literature, but individual methods of radiation imaging and their correlation with each other have not been studied, there are only a couple of foreign meta-analyses on the assessment and analysis of the functional state of LA in patients with AF. This problem is relevant, since the establishment of predictors of AF at an early stage, in particular with its latent course, makes it possible to prevent the development of a number of complications associated with arrhythmia from ischemic strokes to sudden cardiac death.

The purpose of this literature review is to present the data of recent studies on the assessment of the structure and function of LA using STE to identify patients with asymptomatic AF or a high risk of its recurrence after ablation procedures.

About the Authors

M. Kadirova
A.V. Vishnevsky National Medical Research Center of Surgery of the Ministry of Health of the Russian Federation
Russian Federation

Madina Kadirova – Cand. of Sci. (Med.), Head of the Department of Ultrasound diagnostics,

27, Bolshaya Serpukhovskaya str., Moscow 117997



E. V. Yalova
A.V. Vishnevsky National Medical Research Center of Surgery of the Ministry of Health of the Russian Federation
Russian Federation

Evgenia V. Yalova – junior researcher of the Department of Ultrasound diagnostics,

27, Bolshaya Serpukhovskaya str., Moscow 117997



F. S. Shebzuhova
A.V. Vishnevsky National Medical Research Center of Surgery of the Ministry of Health of the Russian Federation
Russian Federation

Fatima S. Shebzuhova – resident of the Department of Ultrasound diagnostics,

27, Bolshaya Serpukhovskaya str., Moscow 117997



A. A. Botasheva
A.V. Vishnevsky National Medical Research Center of Surgery of the Ministry of Health of the Russian Federation
Russian Federation

Aida A. Botasheva – resident of the Department of Ultrasound diagnostics,

27, Bolshaya Serpukhovskaya str., Moscow 117997



E. D. Strebkova
A.V. Vishnevsky National Medical Research Center of Surgery of the Ministry of Health of the Russian Federation; Russian Medical Academy of Continuous Professional Education of the Ministry of Healthcare of the Russian Federation
Russian Federation

Elizaveta D. Strebkova – junior researcher departments of electrophysiological X-ray endovascular methods of diagnostics and treatment of arrhythmias, 27, Bolshaya Serpukhovskaya str., Moscow 117997;

postgraduate student of cardiovascular surgery specialty of the Department of Angiology, Cardiovascular, Endovascular Surgery and Arrhythmology, 2/1, bld. 1, Barrikadnaya str., Moscow 125993



G. G. Kаrmаzаnovsky
A.V. Vishnevsky National Medical Research Center of Surgery of the Ministry of Health of the Russian Federation; Pirogov Russian National Research Medical University of the Ministry of Healthcare of the Russian Federation
Russian Federation

Grigory G. Kаrmаzаnovsky – Academician of the Russiаn Асаdemy of Sсienсes, Dr. of Sci. (Med.), Professor, Heаd of the Department of Radiation Methods of Diagnostics, 27, Bolshaya Serpukhovskaya str., Moscow 117997;

Professor of radiology department, house 1, Ostrivityanova str., Moscow 117997



A. Sh. Revishvili
A.V. Vishnevsky National Medical Research Center of Surgery of the Ministry of Health of the Russian Federation; Russian Medical Academy of Continuous Professional Education of the Ministry of Healthcare of the Russian Federation
Russian Federation

Amiran Sh. Revishvili – Academician of the Russian Academy of Science, Dr. of Sci. (Med.), Professor, Director, 27, Bolshaya Serpukhovskaya str., Moscow 117997;

Head of the Department of Angiology, Cardiovascular, Endovascular Surgery and Arrhythmology named after A.V. Pokrovsky, 2/1, bld. 1, Barrikadnaya str., Moscow 125993



References

1. Chao T.F., Liu C.J., Tuan T.C. et al. Lifetime Risks, Projected Numbers, and Adverse Outcomes in Asian Patients With Atrial Fibrillation: A Report From the Taiwan Nationwide AF Cohort Study. Chest. 2018; 153: 453–466. https://doi.org/10.1016/j.chest.2017.10.001

2. Shapkina M.Yu., Mazdorova E.V., Avdeeva E.M. et al. Changes in the prevalence of atrial fibrillation in the Russian population over a 13-year follow-up. Cardiovascular Therapy and Prevention. 2022. 21 (8): 3108. https://doi.org/10.15829/1728-8800-2022-3108 (In Russian)

3. Brundel B.J.J.M., Ai X., Hills M.T. et al. Atrial fibrillation. Nat. Rev. Dis. Primers. 2022; 8 (1): 21. https://doi.org/10.1038/s41572-022-00347-9

4. Benjamin E.J., Muntner P., Alonso A. et al. American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics-2019 Update: A Report from the American Heart Association. Circulation. 2019; 139: 56–528. https://doi.org/10.1161/CIR.0000000000000659

5. Gurina V.I., Kondrat’ev E.V., Karmazanovsky G.G., Khatsayuk E.A. MDCT Evaluation of Left Atrial Volume in Patients with Cardiac Diseases. Medical Visualization. 2017; 6: 13–18. https://doi.org/10.24835/1607-0763-2017-6-13-18 (In Russian)

6. Pavlyukova E.N., Kuzhel D.A., Matyushin G.V. Left atrial function: modern assessment methods and clinical significance. Rational Pharmacotherapy in Cardiology. 2017; 13 (5): 675–683. https://doi.org/10.20996/1819-6446-2017-13-5-675-683 (In Russian)

7. Khazhbieva S. M., Tembotova Zh.Kh., Serguladze S.Yu. et al. Evaluation of geometric, functional and mechanical parameters of left atrium remodeling after surgical treatment of isolated atrial fibrillation. Annaly aritmologii. 2018; 15 (1): 12–23. https://doi.org/10.15275/annaritmol.2018.1.2 (In Russian)

8. Revishvili S.S., Makarenko V.N., Aleksandrova S.A. Assessment of morphology of pulmonary veins in patients with atrial fibrillation using the computed angiography. Journal of Arrhythmology. 2006; 45: 42–47. (In Russian)

9. Kislitsina O.N., Revishvili A.S., Cox J.L. Unlocking the secrets to regenerating cardiac tissue: an update. Interact Cardiovasc. Thorac. Surg. 2018; 26 (1): 146–153. https://doi.org/10.1093/icvts/ivx264

10. Revishvili A.S., Kadirova M., Popov V.A. et al. Influence of Left Atrium Volume Index on effectiveness of Thoracoscopic Ablation in the Treatment of Atrial Fibrillation. Medical Visualization. 2022; 26 (3): 22–33. https://doi.org/10.24835/1607-0763-1162 (In Russian)

11. Aparina O.P., Stukalova O.V., Parkhomenko D.V. et al. Characteristics of the left atrium miocardium structure in patients with atrial fibrillation and healthy volunteers according to the data of late gadolinium enhancement cardiac magnetic resonance imaging. Journal of Arrhythmology. 2014. (77): 5–12. (In Russian)

12. Delgado V., Di Biase L., Leung M. et al. Structure and Function of the Left Atrium and Left Atrial Appendage: AF and Stroke Implications. J. Am. Coll. Cardiol. 2017; 70: 3157–3172. https://doi.org/10.1016/j.jacc.2017.10.063

13. Nikiforov V.S., Nikishchenkova I.V. Modern Possibilities of Speckle Tracking Echocardiography in Clinical Practice. Rational Pharmacotherapy in Cardiology. 2017. 13(2): 248-255. https://doi.org/10.20996/1819-6446-2017-13-2-248-255 (In Russian)

14. Smorgon A.V., Lebedev D.I., Usenkov S.Yu. et al. Speckletracking intracardiac echocardiography in atrial fibrillation patients during radiofrequency isolation of pulmonary veins. Russian Journal of Cardiology. 2017; 7: 117–120. http://dx.doi.org/10.15829/1560-4071-2017-7-117-120 (In Russian)

15. Musin T.I., Bagmanova Z.A., Gareev D.A. et al. Prediction of sinus rhythm maintenance after radiofrequency ablation in patients with atrial fibrillation using speckle tracking echocardiography and dynamics of left atrial structural and functional parameters. Russian Journal of Cardiology. 2021; 26 (2S): 42–56. https://doi.org/10.15829/1560- 4071-2021-4256 (In Russian)

16. Kislitsina O.N., Cox J.L., Shah S.J. et al. Preoperative left atrial strain abnormalities are associated with the development of postoperative atrial fibrillation following isolated coronary artery bypass surgery. J. Thorac. Cardiovasc. Surg. 2022; 164 (3): 917–924. https://doi.org/10.1016/j.jtcvs.2020.09.130

17. Mandoli G.E., Borrelli C., Cameli M. et al. Speckle tracking echocardiography in heart failure development and progression in patients with apneas. Heart Fail. Rev. 2022; 27 (5):1869–1881. https://doi.org/10.1007/s10741-021-10197-4

18. Hassanin M., Ong G., Connelly K.A. Right Ventricle Longitudinal Strain: A New Tool in Functional Tricuspid Regurgitation Prognostication. Can. J. Cardiol. 2021; 37: 945–948. https://doi.org/10.1016/j.cjca.2021.04.001

19. Ferkh A., Clark A., Thomas L. Left atrial phasic function: physiology, clinical assessment and prognostic value. Heart. 2023: heartjnl-2022-321609. https://doi.org/10.1136/heartjnl-2022-321609

20. Badano L.P., Kolias T.J., Muraru D. et al. Standardization of left atrial, right ventricular, and right atrial deformation imaging using two-dimensional speckle tracking echocardiography: a consensus document of the EACVI/ ASE/Industry Task Force to standardize deformation imaging. Eur. Heart. J. Cardiovasc. Imaging. 2018; 19: 591–600. https://doi.org/10.1093/ehjci/jey042

21. Pathan F., D'Elia N., Nolan M.T.et al. Normal Ranges of Left Atrial Strain by Speckle-Tracking Echocardiography: A Systematic Review and Meta-Analysis. J. Am. Soc. Echocardiogr. 2017; 30 (1): 59–70.e8. https://doi.org/10.1016/j.echo.2016.09.007

22. Kadirova M., Revishvili A.S., Strebkova E.D. et al. Radiation methods for assessment of left atrium function in atrial fibrillation (literature review). Journal of Diagnostic and Interventional Radiology. 2022; 16 (4); 46–60. https://doi.org/10.25512/DIR.2022.16.4.05 (In Russian)

23. Cameli M., Lisi M., Righini F.M. et al. Novel echocardiographic techniques to assess left atrial size, anatomy and function. Cardiovasc. Ultrasound. 2012; 10: 4. https://doi.org/10.1186/1476-7120-10-4

24. Mouselimis D., Tsarouchas A.S., Pagourelias E.D. et al. Left atrial strain, intervendor variability, and atrial fibrillation recurrence after catheter ablation: A systematic review and meta-analysis. Hellenic J. Cardiol. 2020; 61 (3): 154–164. https://doi.org/10.1016/j.hjc.2020.04.008

25. Donal E., Lip G.Y.H., Galderisi M. et al. EACVI/EHRA Expert Consensus Document on the role of multi-modality imaging for the evaluation of patients with atrial fibrillation. Eur Heart J. Cardiovasc. Imaging. 2016; 17 (4): 355–383. https://doi.org/10.1093/ehjci/jev354

26. Gan G.C.H., Ferkh A., Boyd A., Thomas L. Left atrial function: evaluation by strain analysis. Cardiovasc. Diagn. Ther. 2018; 8 (1): 29–46. https://doi.org/10.21037/cdt.2017.06.08

27. Cameli M., Caputo M., Mondillo S. et al. Feasibility and reference values of left atrial longitudinal strain imaging by two dimensional speckle tracking. Cardiovasc. Ultrasound. 2009; 7: 6. https://doi.org/10.1186/1476-7120-7-6

28. Yasuda R., Murata M., Roberts R. et al. Left atrial strain is a powerful predictor of atrial fibrillation recurrence after catheter ablation: study of a heterogeneous population with sinus rhythm or atrial fibrillation. Eur. Heart J. Cardiovasc. Imaging. 2015; 16 (9): 1008–1014. https://doi.org/10.1093/ehjci/jev028

29. Saraiva R.M., Demirkol S., Buakhamsri A. et al. Left atrial strain measured by two-dimensional speckle tracking represents a new tool to evaluate left atrial function. J. Am. Soc. Echocardiogr. 2010; 23 (2): 172–180. https://doi.org/10.1016/j.echo.2009.11.003

30. Yang C.H., Liu H.T., Lee H.L., Lin F.C., Chou C.C. Left atrial booster-pump function as a predictive parameter for atrial fibrillation in patients with severely dilated left atrium. Quant Imaging Med Surg. 2022; 12 (4): 2523– 2534. https://doi.org/10.21037/qims-21-954

31. Rimbaş R.C., Dulgheru R.E., Vinereanu D. Methodological Gaps in Left Atrial Function Assessment by 2D Speckle Tracking Echocardiography. Arq. Bras. Cardiol. 2015; 105 (6): 625–636. https://doi.org/10.5935/abc.20150144

32. Atas H., Kepez A., Tigen K. et al. Evaluation of left atrial volume and function in systemic sclerosis patients using speckle tracking and real-time three-dimensional echocardiography. Anatol. J. Cardiol. 2016; 16: 316–322. https://doi.org/10.5152/anatoljcardiol.2015.6268

33. Kim K.J., Choi H.M., Yoon Y.E. et al. Left atrial mechanical function and global strain in hypertrophic cardiomyopathy. PLoS One. 2016; 11: e0157433. https://doi.org/10.1371/journal.pone.0157433

34. Singh A., Carvalho Singulane C., Miyoshi T. et al. WASE Investigators. Normal Values of Left Atrial Size and Function and the Impact of Age: Results of the World Alliance Societies of Echocardiography Study. J. Am. Soc. Echocardiogr. 2022; 35 (2): 154–164.e3. https://doi.org/10.1016/j.echo.2021.08.008

35. Morris D.A., Takeuchi M., Krisper M. et al. Normal values and clinical relevance of left atrial myocardial function analysed by speckle-tracking echocardiography: multicentre study. Eur. Heart J. Cardiovasc. Imaging. 2015; 16 (4): 364–372. https://doi.org/10.1093/ehjci/jeu219

36. Sun B.J., Park J.H., Lee M. et al. Normal reference values for left atrial strain and its determinants from a large Korean multicenter registry. J. Cardiovasc. Imaging. 2020; 28: 186–198. https://doi.org/10.1111/j.1540-8159.2010.02841.x

37. Liao J.N., Chao T.F., Kuo J.Y. et al. Age, sex, and blood pressurerelated infuences on reference values of left atrial deformation and mechanics from a large-scale Asian population. Circ. Cardiovasc. Imaging. 2017; 10: e006077 https://doi.org/10.1161/CIRCIMAGING.116.006077

38. Sugimoto T., Robinet S., Dulgheru R. et al. Echocardiographic reference ranges for normal left atrial function parameters: results from the EACVI NORRE study. Eur. Heart J. Cardiovasc. Imaging. 2018; 19: 630–638. https://doi.org/10.1093/ehjci/jey018

39. van Grootel R.W.J., Strachinaru M., Menting M.E. et al. In-depth echocardiographic analysis of left atrial function in healthy adults using speckle tracking echocardiography and volumetric analysis. Echocardiography. 2018; 35: 1956–1965. https://doi.org/10.1111/echo.14174

40. Thomas L., Muraru D., Popescu B.A. et al. Evaluation of Left Atrial Size and Function: Relevance for Clinical Practice. J. Am. Soc. Echocardiogr. 2020; 33 (8): 934– 952. https://doi.org/10.1016/j.echo.2020.03.021

41. Mălăescu G.G., Mirea O., Capotă R. et al. Left Atrial Strain Determinants During the Cardiac Phases. JACC Cardiovasc Imaging. 2022; 15 (3): 381–391. https://doi.org/10.1016/j.jcmg.2021.09.009

42. Gan G.C.H., Bhat A., Chen H.H.L. et al. Determinants of LA reservoir strain: Independent effects of LA volume and LV global longitudinal strain. Echocardiography. 2020; 37 (12): 2018–2028. https://doi.org/10.1111/echo.14922

43. Bao L., Cheng L., Gao X. et al. Left atrial morphofunctional remodeling in atrial fibrillation assessed by three-dimensional speckle tracking echocardiography and its value in atrial fibrillation screening. Cardiovasc. Ultrasound. 2022; 20 (1): 13. https://doi.org/10.1186/s12947-022-00282-5

44. Mochizuki A., Yuda S., Oi Y. et al. Assessment of left atrial deformation and synchrony by three-dimensional speckletracking echocardiography: comparative studies in healthy subjects and patients with atrial fibrillation. J. Am. Soc. Echocardiogr. 2013; 26 (2): 165–174. https://doi.org/10.1016/j.echo.2012.10.003

45. Olsen F.J., Bertelsen L., de Knegt M.C. et al. Multimodality cardiac imaging for the assessment of left atrial function and the Association with atrial arrhythmias. Circ. Cardiovasc. Imaging. 2016; 9 (10). https://doi.org/10.1161/CIRCIMAGING.116.004947

46. Gupta D.K., Shah A.M., Giugliano R.P. et al. Left atrial structure and function in atrial fibrillation: ENGAGE AFTIMI 48. Eur. Heart J. 2014; 35 (22): 1457–1465. https://doi.org/10.1093/eurheartj/eht500

47. Shin S.Y., Lim H.E., Choi U.J. et al. Impaired transport function of the left atrium in patients with lone paroxysmal atrial fibrillation. Echocardiography. 2011; 28 (1): 44–51. https://doi.org/10.1111/j.1540-8175.2010.01271.x

48. Shang Z., Su D., Cong T. et al. Assessment of left atrial mechanical function and synchrony in paroxysmal atrial fibrillation with two-dimensional speckle tracking echocardiography. Echocardiography. 2017; 34 (2): 176–183. https://doi.org/10.1111/echo.13434

49. Mochizuki A., Yuda S., Oi Y. et al. Assessment of left atrial deformation and synchrony by three-dimensional speckle-tracking echocardiography: comparative studies in healthy subjects and patients with atrial fibrillation. J. Am. Soc. Echocardiogr. 2013; 26 (2): 165–174. https://doi.org/10.1016/j.echo.2012.10.003

50. Chadaide S., Domsik P., Kalapos A., et al. Threedimensional speckle tracking echocardiography-derived left atrial strain parameters are reduced in patients with atrial fibrillation (results from the MAGYAR-path study). Echocardiography. 2013; 30 (9): 1078–1083. https://doi.org/10.1111/echo.12218

51. Atsuko F., Katsuhisa I., Eiichi H. et al. Three-dimensional speckle tracking imaging for assessing left atrial function in hypertensive patients with paroxysmal atrial fibrillation. Int. Heart J. 2016; 57 (6): 705. https://doi.org/10.1536/ihj.16-121.

52. Hindricks G., Potpara T., Dagres N. et al. 2020 ESC guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): the task force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur. Heart J. 2020; 42 (5): 373–498. https://doi.org/10.1093/eurheartj/ehaa612

53. Benjamin E.J., Muntner P., Alonso A. et al. Heart disease and stroke statistics – 2019 update: a report from the American Heart Association. Circulation. 2019; 139 (10): e56–e528. https://doi.org/10.1161/CIR.0000000000000659

54. Reiffel J.A., Verma A., Kowey P.R. et al. Incidence of previously undiagnosed atrial fibrillation using Insertable cardiac monitors in a high-risk population: the REVEAL AF study. JAMA Cardiol. 2017; 2 (10): 1120–1127. https://doi.org/10.1001/jamacardio.2017.3180

55. Brachmann J., Morillo C.A., Sanna T. et al. Uncovering atrial fibrillation beyond short-term monitoring in cryptogenic stroke patients: three-year results from the cryptogenic stroke and underlying atrial fibrillation trial. Circ. Arrhythm. Electrophysiol. 2016; 9 (1): e003333. https://doi.org/10.1161/circep.115.003333

56. Casaclang-Verzosa G., Gersh B.J., Tsang T.S. Structural and functional remodeling of the left atrium: clinical and therapeutic implications for atrial fibrillation. J. Am. Coll. Cardiol. 2008; 51: 1–11. https://doi.org/10.4022/jafib.986

57. Hoit B.D. Left atrial size and function: role in prognosis. J. Am. Coll. Cardiol. 2014; 63: 493–505. https://doi.org/10.1016/j.jacc.2013.10.055

58. Yuda S., Muranaka A., Miura T. Clinical implications of left atrial function assessed by speckle tracking echocardiography. J Echocardiogr. 2016; 14: 104–112. https://doi.org/10.1016/j.jacc.2013.10.055

59. Kojima T., Kawasaki M., Tanaka R. et al. Left atrial global and regional function in patients with paroxysmal atrial fibrillation has already been impaired before enlargement of left atrium: velocity vector imaging echocardiography study. Eur. Heart J. Cardiovasc. Imaging. 2012; 13: 227–234. https://doi.org/10.1093/ejechocard/jer281

60. Yoon Y.E., Oh I.Y., Kim S.A. et al. Echocardiographic Predictors of Progression to Persistent or Permanent Atrial Fibrillation in Patients with Paroxysmal Atrial Fibrillation (E6P Study). J. Am. Soc. Echocardiogr. 2015; 28: 709–717. https://doi.org/10.1016/j.echo.2015.01.017

61. Pagola J., González-Alujas T., Flores A. et al. Left atria strain is a surrogate marker for detection of atrial fibrillation in cryptogenic strokes. Stroke. 2014; 45: e164–166. https://doi.org/10.1161/STROKEAHA.114.005540

62. Tzou W.S., Marchlinski F.E., Zado E.S. et al. Long-term outcome after successful catheter ablation of atrial fibrillation. Circ. Arrhythm. Electrophysiol. 2010; 3: 237–242. https://doi.org/10.1161/CIRCEP.109.923771

63. Oral H., Knight B.P., Tada H. et al. Pulmonary vein isolation for paroxysmal and persistent atrial fibrillation. Circulation. 2002; 105: 1077–1081. https://doi.org/10.1038/s41569-020-00451-x

64. Berruezo A., Tamborero D., Mont L. et al. Pre-procedural predictors of atrial fibrillation recurrence after circumferential pulmonary vein ablation. Eur. Heart J. 2007; 28: 836–841. https://doi.org/10.1093/eurheartj/ehm027

65. Yasuda R., Murata M., Roberts R. et al. Left atrial strain is a powerful predictor of atrial fibrillation recurrence after catheter ablation: study of a heterogeneous population with sinus rhythm or atrial fibrillation. Eur. Heart J. Cardiovasc. Imaging. 2015; 16: 1008–1014. https://doi.org/10.1093/ehjci/jev028

66. Hammerstingl C., Schwekendiek M., Momcilovic D. et al. Left atrial deformation imaging with ultrasound based twodimensional speckle-tracking predicts the rate of recurrence of paroxysmal and persistent atrial fibrillation after successful ablation procedures. J. Cardiovasc. Electrophysiol. 2012; 23: 247–255. https://doi.org/10.1111/j.1540-8167.2011.02177.x

67. Schneider C., Malisius R., Krause K. et al. Strain rate imaging for functional quantification of the left atrium: atrial deformation predicts the maintenance of sinus rhythm after catheter ablation of atrial fibrillation. Eur. Heart J. 2008; 29 (11): 1397–1409. https://doi.org/10.1093/eurheartj/ehn168.

68. Kuppahally S.S., Akoum N., Burgon N.S. et al. Left atrial strain and strain rate in patients with paroxysmal and persistent atrial fibrillation: relationship to left atrial structural remodeling detected by delayed-enhancement MRI. Circ. Cardiovasc. Imaging. 2010; 3 (3): 231–239. https://doi.org/10.1161/circimaging.109.865683

69. Ma X.X., Boldt L.H., Zhang Y.L. et al. Clinical relevance of left atrial strain to predict recurrence of atrial fibrillation after catheter ablation: a meta-analysis. Echocardiography. 2016; 33 (5): 724–733. https://doi.org/S1205380612X

70. Parwani A.S., Morris D.A., Blaschke F. et al. Left atrial strain predicts recurrence of atrial arrhythmias after catheter ablation of persistent atrial fibrillation. Open Heart. 2017; 4 (1): e000572. https://doi.org/10.1136/openhrt-2016-000572

71. Moreno-Ruiz L.A., Madrid-Miller A., Martinez-Flores J.E. et al. Left atrial longitudinal strain by speckle tracking as independent predictor of recurrence after electrical cardioversion in persistent and long standing persistent non-valvular atrial fibrillation. Int. J. Cardiovasc. Imaging. 2019; 35: 1587–1596. https://doi.org/10.1007/s10554-019-01597-7

72. Nielsen A.B., Skaarup K.G., Lassen M. et al. Usefulness of left atrial speckle tracking echocardiography in predicting recurrence of atrial fibrillation after radiofrequency ablation: a systematic review and meta-analysis. Int. J. Cardiovasc. Imaging. 2020; 36: 1293–1309. https://doi.org/10.1007/s10554-020-01828-2

73. Nielsen A.B., Skaarup K.G., Djernaes K. et al. Left atrial contractile strain predicts recurrence of atrial tachyarrhythmia after catheter ablation. Int. J. Cardiol. 2022; 358: 51–57. https://doi.org/10.1016/j.ijcard.2022.04.056

74. Nielsen A.B., Skaarup K.G., Hauser R. et al. Normal values and reference ranges for left atrial strain by speckletracking echocardiography: the Copenhagen City heart study. Eur. Heart J. Cardiovasc. Imaging. 2021; 23: 42–51. https://doi.org/10.1093/ehjci/jeab201

75. Obokata M., Negishi K., Kurosawa K. et al. Left atrial strain provides incremental value for embolism risk stratification over CHA2DS2-VASc score and indicates prognostic impact in patients with atrial fibrillation. J. Am. Soc. Echocardiogr. 2014; 27: 709–716.e4. https://doi.org/10.1016/j.echo.2014.03.010

76. Azemi T., Rabdiya V.M., Ayirala S.R. et al. Left atrial strain is reduced in patients with atrial fibrillation, stroke or TIA, and low risk CHADS(2) scores. J. Am. Soc. Echocardiogr. 2012; 25: 1327–1332. https://doi.org/10.1016/j.echo.2012.09.004

77. Shih J.Y., Tsai W.C., Huang Y.Y. et al. Association of decreased left atrial strain and strain rate with stroke in chronic atrial fibrillation. J. Am. Soc. Echocardiogr. 2011; 24: 513–519. https://doi.org/10.1016/j.echo.2011.01.016

78. Hsu P.C., Lee W.H., Chu C.Y. et al. Prognostic role of left atrial strain and its combination index with transmitral E-wave velocity in patients with atrial fibrillation. Sci. Rep. 2016; 6: 17318. https://doi.org/10.1038/srep17318

79. Olsen F.J., Jørgensen P.G., Møgelvang R. et al. Predicting Paroxysmal Atrial Fibrillation in Cerebrovascular Ischemia Using Tissue Doppler Imaging and Speckle Tracking Echocardiography J Stroke. J. Stroke Cerebrovasc. Dis. 2016; 25: 350–359. https://doi.org/10.1016/j.jstrokecere brovasdis.2015.10.004

80. Kim D., Shim C.Y., Cho I.J. et al. Incremental Value of Left Atrial Global Longitudinal Strain for Prediction of Post Stroke Atrial Fibrillation in Patients with Acute Ischemic Stroke. J. Cardiovasc. Ultrasound. 2016; 24: 20–27. https://doi.org/10.4250/jcu.2016.24.1.20.


Review

For citations:


Kadirova M., Yalova E.V., Shebzuhova F.S., Botasheva A.A., Strebkova E.D., Kаrmаzаnovsky G.G., Revishvili A.Sh. Modern methods of echocardiographic assessment of the functional status of the left atrium in atrial fibrillation. Medical Visualization. 2023;27(3):24-40. (In Russ.) https://doi.org/10.24835/1607-0763-1360

Views: 922


ISSN 1607-0763 (Print)
ISSN 2408-9516 (Online)