Preview

Medical Visualization

Advanced search

Non-Invasive Measurement of Oxygen Metabolism. Part 2: New Techniques in PET and MRI

https://doi.org/10.24835/1607-0763-1376

Abstract

Oxygen metabolism is a key factor in the life of a living organism. The article is the second part of a review of methods for measuring oxygen metabolism.

Purpose. The aim of this review is to provide an insight into newly developed perfusion measurement techniques based on MRI and CT comparing their accuracy with the “gold standard” H215O PET measurements and describing their role in today’s clinical practice.

Materials and methods. More than 200 Pubmed publications were analyzed for the keywords “perfusion, MRI, CT, ASL, oxygen metabolism”. Relevant publications that do not contain these keywords or contain them in a different wording were also studied.

Results. This review selected 49 publications describing CT and MR perfusion using contrast agents and MR ASL perfusion. Examples of the use of the described methods in fundamental research and applied medicine are given.

Conclusion. The quantitative results obtained using novel non-invasive molecular imaging techniques are in most cases comparable to H215O PET data, which opens the way for broad use of MRI and CT perfusion and oxygen metabolism measurements in clinical practice.

About the Authors

Andrey A. Postnov
N.N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Healthcare of the Russian Federation; 16, 4rd Tverskaya-Yamskaya str., Moscow 125047, Russian Federation National Research Nuclear University MEPhI (Moscow Engineering Physics Institute); 115230, Moscow, Kashirskoe shosse, 31, Russian Federation P.N. Lebedev Physical Institute of the Russian Academy of Sciences; 53, Leninsky prospect, Moscow 119991, Russian Federation
Russian Federation

Andrey A. Postnov – Cand. of Sci. (Phys.-Math.), researcher of Department of X-ray and Radioisotope Diagnostic Methods, N.N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Healthcare of Russia; Assistant Professor of National Research Nuclear University MEPhI (Moscow Engineering Physics Institute); researcher of P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow



Diana B. Kalaeva
N.N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Healthcare of the Russian Federation; 16, 4rd Tverskaya-Yamskaya str., Moscow 125047, Russian Federation National Research Nuclear University MEPhI (Moscow Engineering Physics Institute); 115230, Moscow, Kashirskoe shosse, 31, Russian Federation
Russian Federation

Diana B. Kalaeva – Medical physicist of the Department of X-ray and Radioisotope Diagnostic Methods, N.N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Healthcare of Russia; graduate student of National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow



Anton B. Balakhonov
N.N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Healthcare of the Russian Federation; 16, 4rd Tverskaya-Yamskaya str., Moscow 125047, Russian Federation
Russian Federation

Anton B. Balakhonov – Lead Engineer of the Department of X-ray and Radioisotope Diagnostic Methods, N.N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Healthcare of Russia, Moscow



Igor’ N. Pronin
N.N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Healthcare of the Russian Federation; 16, 4rd Tverskaya-Yamskaya str., Moscow 125047, Russian Federation

Igor’ N. Pronin – Academician of the Russian Academy of Sciences, Doct. of Sci. (Med.), Professor, Head of the Department of X-ray and Radioisotope Diagnostic Methods, N.N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Healthcare of Russia, Moscow



References

1. Список литературы (англ)

2. Van Der Veldt A.A.M., Hendrikse N.H., Harms H.J., et al. Quantitative parametric perfusion images using 15O-labeled water and a clinical PET/CT scanner: Test-retest variability in lung cancer. J Nucl Med. 2010; 51 (11): 1684-1690. https://doi.org/10.2967/jnumed.110.079137

3. Rosen B.R., Belliveau J.W., Vevea J.M., Brady T.J. Perfusion imaging with NMR contrast agents. Magn Reson Med. 1990; 14 (2): 249-265. https://doi.org/10.1002/mrm.1910140211

4. Copen W.A., Lev M.H., Rapalino O. Brain Perfusion: Computed Tomography and Magnetic Resonance Techniques. Vol 135. 1st ed. Elsevier B.V.; 2016. https://doi.org/10.1016/B978-0-444-53485-9.00006-4

5. Wannamaker R., Buck B., Butcher K. Multimodal CT in Acute Stroke. Curr Neurol Neurosci Rep. 2019; 19 (9). https://doi.org/10.1007/s11910-019-0978-z

6. Vilela P., Rowley H.A. Brain ischemia: CT and MRI techniques in acute ischemic stroke. Eur J Radiol. 2017; 96 (May): 162-172. https://doi.org/10.1016/j.ejrad.2017.08.014

7. Batalov A.I., Zakharova N.E., Pronin I.N., et al. 3D pCASL-perfusion in preoperative assessment of brain gliomas in large cohort of patients. Sci Rep. 2022; 12 (1): 2121. https://doi.org/10.1038/s41598-022-05992-4

8. Batalov A.I., Zakharova N.E., Chekhonin I. V., et al. Arterial Spin Labeling Perfusion in Determining the IDН1 Status and Ki-67 Index in Brain Gliomas. Diagnostics. 2022; 12 (6): 1-12. https://doi.org/10.3390/diagnostics12061444

9. Shults E.I., Pronin I.N., Batalov A.I., et al. CT-perfusion in assessment of the malignant gliomas hemodynamics. Med Vis. 2020; 24 (2): 105-118. (In Russ.) https://doi.org/10.24835/1607-0763-2020-2-105-118

10. Ibaraki M., Ohmura T., Matsubara K., Kinoshita T. Reliability of CT perfusion-derived CBF in relation to hemodynamic compromise in patients with cerebrovascular steno-occlusive disease: A comparative study with 15O PET. J Cereb Blood Flow Metab. 2015; 35 (8): 1280-1288. https://doi.org/10.1038/jcbfm.2015.39

11. Lassen N., Indvar D. Brain regions involved in voluntary movements as revealed by radioisotopic mapping of CBF or CMR-glucose changes. Rev Neurol (Paris). 1990; 146 (10): 620-625.

12. Gur D., Good W.F., Wolfson S.K., Yonas H., Shabason L. In vivo mapping of local cerebral blood flow by xenon-enhanced computed tomography. Science. 1982; 215 (4537): 1267-1268. https://doi.org/10.1126/science.7058347

13. Yonas H., Darby J.M., Marks E.C., Durham S.R., Maxwell C. CBF measured by Xe-CT: Approach to analysis and normal values. J Cereb Blood Flow Metab. 1991; 11 (5): 716-725. https://doi.org/10.1038/jcbfm.1991.128

14. Kety S.S., Schmidt C.F. the Nitrous Oxide Method for the Quantitative Determination of Cerebral Blood Flow in Man: Theory, Procedure and Normal Values. J Clin Invest. 1948; 27 (4): 476-483. https://doi.org/10.1172/JCI101994

15. Mullins M.E. Stroke Imaging with Xenon-CT. Semin Ultrasound, CT MRI. 2006; 27 (3): 219-220. https://doi.org/10.1053/j.sult.2006.02.006

16. Yonas H., Pindzola R.R., Johnson D.W. Xenon / Computed Tomography Cerebral Blood Flow and its use in Clinical Management. Neurosurg Clin N Am. 1996; 7 (4): 605-616. https://doi.org/10.1016/S1042-3680(18)30349-8

17. Svedung Wettervik T., Engquist H., Hånell A., et al. Cerebral Blood Flow and Oxygen Delivery in Aneurysmal Subarachnoid Hemorrhage: Relation to Neurointensive Care Targets. Neurocrit Care. 2022; 37 (1): 281-292. https://doi.org/10.1007/s12028-022-01496-1

18. Williams D.S., Detre J.A., Leigh J.S., Koretsky A.P. Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci U S A. 1992; 89 (1): 212-216. https://doi.org/10.1073/pnas.89.1.212

19. Fan A.P., Jahanian H., Holdsworth S.J., Zaharchuk G. Comparison of cerebral blood flow measurement with [15 O]-water positron emission tomography and arterial spin labeling magnetic resonance imaging: A systematic review. J Cereb Blood Flow Metab. 2015; 36 (5): 842-861. https://doi.org/10.1177/0271678X16636393

20. De Vis J.B., Hendrikse J., Groenendaal F., et al. Impact of neonate haematocrit variability on the longitudinal relaxation time of blood: Implications for arterial spin labelling MRI. NeuroImage Clin. 2014; 4: 517-525. https://doi.org/10.1016/j.nicl.2014.03.006

21. Steen R.G., Gronemeyer S.A., Kingsley P.B., Reddick W.E., Langston J.S., Taylor J.S. Precise and accurate measurement of proton T1 in human brain in vivo: Validation and preliminary clinical application. J Magn Reson Imaging. 1994; 4 (5): 681-691. https://doi.org/10.1002/jmri.1880040511

22. Heijtel D.F.R., Mutsaerts H.J.M.M., Bakker E., et al. Accuracy and precision of pseudo-continuous arterial spin labeling perfusion during baseline and hypercapnia: A head-to-head comparison with 15O H2O positron emission tomography. Neuroimage. 2014; 92: 182-192. https://doi.org/10.1016/j.neuroimage.2014.02.011

23. Puig O., Vestergaard M.B., Lindberg U., et al. Phase contrast mapping MRI measurements of global cerebral blood flow across different perfusion states – A direct comparison with 15O-H2O positron emission tomography using a hybrid PET/MR system. J Cereb Blood Flow Metab. 2019; 39 (12): 2368-2378. https://doi.org/10.1177/0271678X18798762

24. Puig O., Henriksen O.M., Vestergaard M.B., et al. Comparison of simultaneous arterial spin labeling MRI and 15O-H2O PET measurements of regional cerebral blood flow in rest and altered perfusion states. J Cereb Blood Flow Metab. 2020; 40 (8): 1621-1633. https://doi.org/10.1177/0271678X19874643

25. Zhang K., Herzog H., Mauler J., et al. Comparison of cerebral blood flow acquired by simultaneous [ 15O]water positron emission tomography and arterial spin labeling magnetic resonance imaging. J Cereb Blood Flow Metab. 2014; 34 (8): 1373-1380. https://doi.org/10.1038/jcbfm.2014.92

26. van Golen L.W., Kuijer J.P.A., Huisman M.C., et al. Quantification of Cerebral Blood Flow in Healthy Volunteers and Type 1 Diabetic Patients : Comparison of MRI Arterial Spin Labeling and [ 15 O ] H 2 O Positron Emission Tomography ( PET ). J Magn Reson imaging. 2014; 40: 1300-1309. https://doi.org/10.1002/jmri.24484

27. Puig O., Henriksen O.M., Andersen F.L., et al. Deep-learning-based attenuation correction in dynamic [15O]H2O studies using PET/MRI in healthy volunteers. J Cereb Blood Flow Metab. 2021; 41 (12): 3314-3323. https://doi.org/10.1177/0271678X211029178

28. Fan A.P., Khalighi M.M., Guo J., et al. Identifying hypoperfusion in moyamoya disease with arterial spin labeling and an [15O]-Water positron emission tomography/magnetic resonance imaging normative database. Stroke. 2019; 50 (2): 373-380. https://doi.org/10.1161/STROKEAHA.118.023426

29. Zhao M.Y., Fan A.P., Chen D.Y.T., et al. Using arterial spin labeling to measure cerebrovascular reactivity in Moyamoya disease: Insights from simultaneous PET/MRI. J Cereb Blood Flow Metab. 2022; 42 (8): 1493-1506. https://doi.org/10.1177/0271678X221083471

30. Itagaki H., Kokubo Y., Kawanami K., et al. Arterial spin labeling magnetic resonance imaging at short post-labeling delay reflects cerebral perfusion pressure verified by oxygen-15-positron emission tomography in cerebrovascular steno-occlusive disease. Acta radiol. 2021; 62 (2): 225-233. https://doi.org/10.1177/0284185120917111

31. Dolui S., Fan A.P., Zhao M.Y., Nasrallah I.M., Zaharchuk G., Detre J.A. Reliability of arterial spin labeling derived cerebral blood flow in periventricular white matter. Neuroimage: Reports. 2021; 1 (4): 100063. https://doi.org/10.1016/j.ynirp.2021.100063

32. Ssali T., Anazodo U.C., Thiessen J.D., Prato F.S., St Lawrence K. A noninvasive method for quantifying cerebral blood flow by hybrid PET/MRI. J Nucl Med. 2018; 59 (8): 1329-1334. https://doi.org/10.2967/jnumed.117.203414

33. Narciso L., Ssali T., Iida H., St Lawrence K. A non-invasive reference-based method for imaging the cerebral metabolic rate of oxygen by PET/MR: Theory and error analysis. Phys Med Biol. 2021; 66 (6). https://doi.org/10.1088/1361-6560/abe737

34. Siripongsatian D., Kunawudhi A., Promteangtrong C., et al. Alterations in 18F-FDG PET/MRI and 15O-Water PET Brain Findings in Patients with Neurological Symptoms after COVID-19 Vaccination: A Pilot Study. Clin Nucl Med. 2022; 47 (3): E230-E239. https://doi.org/10.1097/RLU.0000000000004041

35. Khalighi M.M., Deller T.W., Fan A.P., et al. Image-derived input function estimation on a TOF-enabled PET/MR for cerebral blood flow mapping. J Cereb Blood Flow Metab. 2018; 38 (1): 126-135. https://doi.org/10.1177/0271678X17691784

36. Zhang B.L., Liu J., Lei Y., et al. An Epigenetic Mechanism of High Gdnf Transcription in Glioma Cells Revealed by Specific Sequence Methylation. Mol Neurobiol. 2015; 53 (7): 4352-4362. https://doi.org/10.1007/s12035-015-9365-1

37. Lan X., Younis M.H., Li K., Cai W. First clinical experience of 106 cm , long axial field ‑ of ‑ view ( LAFOV ) PET / CT : an elegant balance between standard axial ( 23 cm ) and total ‑ body ( 194 cm ) systems. Eur J Nucl Med Mol Imaging. 2021; 48 (12): 3755-3759. https://doi.org/10.1007/s00259-021-05505-x

38. Gupta A., Chazen J.L., Hartman M., et al. Cerebrovascular Reserve and Stroke Risk in Patients With Carotid Stenosis or Occlusion A Systematic Review and Meta-Analysis. Stroke. 2012; 43 (11): 2884-2891. https://doi.org/10.1161/STROKEAHA.112.663716

39. Ishii K., Kitagaki H., Kono M., Mon E. Decreased Medial Temporal Oxygen Metabolism in Alzheimer ’ s Disease Shown by PET disease largest constituent. J Nucl Med. 1996; 37 (7): 1159-1165.

40. Cho J., Lee J., An H., Goyal M.S., Su Y., Wang Y. Cerebral oxygen extraction fraction (OEF): Comparison of challenge-free gradient echo QSM+qBOLD (QQ) with 15O PET in healthy adults. J Cereb Blood Flow Metab. 2021; 41 (7): 1658-1668. https://doi.org/10.1177/0271678X20973951

41. Jiang D., Deng S., Franklin C.G., et al. Validation of T2-based oxygen extraction fraction measurement with 15O positron emission tomography. Magn Reson Med. 2021; 85 (1): 290-297. https://doi.org/10.1002/mrm.28410

42. Wehrli F.W., Rodgers Z., Jain V., et al. Time-Resolved MRI Oximetry for Quantifying CMRO 2 and Vascular Reactivity. Acad Radiol. 2014; 21 (2): 207-214. https://doi.org/10.1016/j.acra.2013.11.001

43. Ponto L.L.B., Moser D.J., Menda Y., et al. Early Phase PIB-PET as a Surrogate for Global and Regional Cerebral Blood Flow Measures. J Neuroimaging. 2019; 29 (1): 85-96. https://doi.org/10.1111/jon.12582


Review

For citations:


Postnov A.A., Kalaeva D.B., Balakhonov A.B., Pronin I.N. Non-Invasive Measurement of Oxygen Metabolism. Part 2: New Techniques in PET and MRI. Medical Visualization. 2024;28(2):145-152. (In Russ.) https://doi.org/10.24835/1607-0763-1376

Views: 430


ISSN 1607-0763 (Print)
ISSN 2408-9516 (Online)