Preview

Medical Visualization

Advanced search

Radiomics of fetal magnetic resonance imaging in congenital diaphragmatic hernia

https://doi.org/10.24835/1607-0763-1359

Abstract

Objectives. Analysis of possibilities of radiomics as a source of additional diagnostic information about the structural maturity of the lungs

Materials and methods. A retrospective study included 72 pregnant women: 35 with congenital fetal diaphragmatic hernia (group 1) and 37 without fetal lung pathology (group 2). Frontal or co-frontal T2 images (T2 FSE) were obtained. Segmentation of regions of interest at the fetal lung level was performed manually with ITK-Snap. A total of 107 radiomic features were extracted using pyradiomics. The statistical analysis was performed using the STATISTICA 10 statistical analysis package (USA) to detect correlation between trait values and the target variable (presence of lung pathology in CDH), and to show differences in the comparison groups according to the detected parameters.

Results. Statistically significant features were identified for 2D and 3D segmentations (p < 0.05). For 2D and 3D segmentations, the number of significant features was 14 and 73, respectively. After exclusion of features with cross-correlations, their number decreased to 6 and 8 for single slices and 3D images, respectively. Correlation coefficients between the features and the presence of lung pathology were also calculated. In the case of 3D images, the number of features with significant correlation coefficients (r > 0.4, p < 0.05) equaled 20, while for single-slice images this number was 3.

Conclusion. The data obtained allow to conclude that it is reasonable to use texture analysis of the 3D MRI images as a source of additional diagnostic information concerning the structural maturity of the lungs.

About the Authors

E. M. Syrkashev
Research Center for Obstetrics, Gynecology and Perinatology named by V.I. Kulakov of the Ministry of Healthcare of the Russian Federation; Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies of Moscow Healthcare Department
Russian Federation

Egor M. Syrkashev – Cand. of Sci. (Med.), Researcher

4, Akademika Oparina street, Moscow 117997; 24, Petrovka str., Moscow 127051

Phone: +7-915-107-52-28



A. A. Burov
Research Center for Obstetrics, Gynecology and Perinatology named by V.I. Kulakov of the Ministry of Healthcare of the Russian Federation
Russian Federation

Artem A. Burov – Cand. of Sci. (Med.), Chief Clinician

4, Akademika Oparina street, Moscow 117997



Yu. L. Podurovskaya
Research Center for Obstetrics, Gynecology and Perinatology named by V.I. Kulakov of the Ministry of Healthcare of the Russian Federation
Russian Federation

Yulia L. Podurovskaya – Cand. of Sci. (Med.), Head of the neonatal surgery department

4, Akademika Oparina street, Moscow 117997



F. Z. Kadyrberdiyeva
Research Center for Obstetrics, Gynecology and Perinatology named by V.I. Kulakov of the Ministry of Healthcare of the Russian Federation
Russian Federation

Faina Z. Kadyrberdiyeva – Cand. of Sci. (Med.), Researcher

4, Akademika Oparina street, Moscow 117997



E. O. Ikryannikov
Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies of Moscow Healthcare Department
Russian Federation

Egor O. Ikryannikov – technician

24, Petrovka str., Moscow 127051



D. S. Semenov
Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies of Moscow Healthcare Department
Russian Federation

Dmitriy S. Semenov – Head of sector

24, Petrovka str., Moscow 127051



D. E. Sharova
Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies of Moscow Healthcare Department
Russian Federation

Daria E. Sharova – Head of innovative technologies department

24, Petrovka str., Moscow 127051



Yu. A. Vasilev
Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies of Moscow Healthcare Department
Russian Federation

Yuriy A. Vasilev – Cand. of Sci. (Med.), Director

24, Petrovka str., Moscow 127051



A. I. Gus
Research Center for Obstetrics, Gynecology and Perinatology named by V.I. Kulakov of the Ministry of Healthcare of the Russian Federation
Russian Federation

Aleksandr I. Gus – Doct. of Sci. (Med.), Chief Researcher

4, Akademika Oparina street, Moscow 117997



References

1. Lambin P., Rios-Velazquez E., Leijenaar R. et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur. J. Cancer. 2012; 48 (4): 441–446. http://doi.org/10.1016/j.ejca.2011.11.036

2. Kumar V., Gu Y., Basu S. et al. Radiomics: the process and the challenges. Magn. Reson. Imaging. 2012; 30 (9): 1234–1248. http://doi.org/10.1016/j.mri.2012.06.010

3. Mirestean C.C., Pagute O., Buzea C. et al. Radiomic Machine Learning and Texture Analysis - New Horizons for Head and Neck Oncology. Maedica (Bucur). 2019; 14 (2): 126–130. http://doi.org/10.26574/maedica.2019.14.2.126

4. Govorukhina V.G., Semenov S.S., Gelezhe P.B. et al. The role of mammography in breast cancer radiomics. Digital Diagnostics. 2021; 2 (2): 185–199. http://doi.org/10.17816/DD70479 (In Russian)

5. Bae S., Choi Y.S., Ahn S.S. et al. Radiomic MRI Phenotyping of Glioblastoma: Improving Survival Prediction. Radiology. 2018; 289 (3): 797–806. http://doi.org/10.1148/radiol.2018180200

6. Coroller T.P., Agrawal V., Huynh E. et al. Radiomic-Based Pathological Response Prediction from Primary Tumors and Lymph Nodes in NSCLC. J. Thorac. Oncol. 2017; 12 (3): 467–476. http://doi.org/10.1016/j.jtho.2016.11.2226

7. Du Y., Fang Z., Jiao J. et al. Application of ultrasound-based radiomics technology in fetal-lung-texture analysis in pregnancies complicated by gestational diabetes and/or pre-eclampsia. Ultrasound Obstet Gynecol. 2021; 57 (5): 804–812. http://doi.org/10.1002/uog.22037

8. Watzenboeck M.L., Heidinger B.H., Rainer J. et al. Reproducibility of 2D versus 3D radiomics for quantitative assessment of fetal lung development: a retrospective fetal MRI study. Insights. Imaging. 2023; 14 (1): 31. http://doi.org/10.1186/s13244-023-01376-y

9. Heinzerling N., Wagner A. Fetal Diagnosis and Therapy: A Reference Handbook for Pediatric Surgeons. Fetal Diagn. Ther. 2013.

10. Jokhi R.P., Whitby E.H. Magnetic resonance imaging of the fetus. Dev. Med. Child Neurol. 53 (1): 18–28. http://doi.org/10.1111/j.1469-8749.2010.03813.x

11. Prayer D., Malinger G., De Catte L. et al.; ISUOG Clinical Standards Committee. ISUOG Practice Guidelines (updated): performance of fetal magnetic resonance imaging. Ultrasound Obstet Gynecol. 2023; 61 (2): 278–287. http://doi.org/10.1002/uog.26129

12. Prayer D., Malinger G., Brugger P.C. et al. ISUOG Practice Guidelines: performance of fetal magnetic resonance imaging. Ultrasound Obstet. Gynecol. 2017; 49 (5): 671–680. http://doi.org/10.1002/uog.17412

13. Dütemeyer V., Cordier A.G., Cannie M.M. et al. Prenatal prediction of postnatal survival in fetuses with congenital diaphragmatic hernia using MRI: lung volume measurement, signal intensity ratio, and effect of experience. J. Matern. Fetal Neonatal Med. 2022; 35 (6): 1036–1044. http://doi.org/10.1080/14767058.2020.1740982

14. Syrkashev E.M., Solopova A.E., Bychenko V.G. et al. Fetal pulmonary biometry in congenital diaphragmal hernia using MRI. REJR. 2020; 10 (4): 169–178. http://doi.org/10.21569/2222-7415-2020-10-4-169-178 (In Russian)

15. Farrugia M.K., Raza S.A., Gould S., Lakhoo K. Congenital lung lesions: classification and concordance of radiological appearance and surgical pathology. Pediatr. Surg. Int. 2008; 24 (9): 987–991. http://doi.org/10.1007/s00383-008-2201-1

16. Zani A., Chung W.K., Deprest J. et al. Congenital diaphragmatic hernia. Nat. Rev. Dis. Primers. 2022; 8 (1): 37. http://doi.org/10.1038/s41572-022-00362-w

17. Yushkevich P.A., Gao Y., Gerig G. ITK-SNAP: An interactive tool for semi-automatic segmentation of multi-modality biomedical images. 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA. 2016; 3342–3345. http://doi.org/10.1109/EMBC.2016.7591443

18. Shchegolev A.I., Tumanova U.N. Pulmonary hypoplasia: causes and pathological finding. Int. J. Appl. Fundam. Res. 2017; 4: 101–153.

19. Ogawa R., Kido T., Nakamura M. et al. Magnetic resonance assessment of fetal lung maturity: comparison between signal intensity and volume measurement. Jpn. J. Radiol. 2018; 36 (7): 444–449. http://doi.org/10.1007/s11604-018-0745-0

20. Keller T.M., Rake A., Michel S.C. et al. MR assessment of fetal lung development using lung volumes and signal intensities. Eur. Radiol. 2004; 14 (6): 984–989. http://doi.org/10.1007/s00330-004-2256-x

21. Oka Y., Rahman M., Sasakura C. et al. Prenatal diagnosis of fetal respiratory function: evaluation of fetal lung maturity using lung-to-liver signal intensity ratio at magnetic resonance imaging. Prenat. Diagn. 2014; 34 (13): 1289–1294. http://doi.org/10.1002/pd.4469

22. Moshiri M., Mannelli L., Richardson M.L. et al. Fetal lung maturity assessment with MRI fetal lung-to-liver signal-intensity ratio. Am. J. Roentgenol. 2013; 201 (6): 1386–1390. http://doi.org/10.2214/AJR.12.9679

23. Mills M., Winter T.C., Kennedy A.M., Woodward P.J. Determination of fetal lung maturity using magnetic resonance imaging signal intensity measurements. Ultrasound Q. 2014; 30 (1): 61–67. http://doi.org/10.1097/RUQ.0000000000000054

24. Yamoto M., Iwazaki T., Takeuchi K. et al. The fetal lung-to-liver signal intensity ratio on magnetic resonance imaging as a predictor of outcomes from isolated congenital diaphragmatic hernia. Pediatr. Surg. Int. 2018; 34 (2): 161–168. http://doi.org/10.1007/s00383-017-4184-2

25. Cordier A.G., Russo F.M., Deprest J., Benachi A. Prenatal diagnosis, imaging, and prognosis in Congenital Diaphragmatic Hernia. Semin. Perinatol. 2020; 44 (1): 51163. http://doi.org/10.1053/j.semperi.2019.07.002

26. Madenci A.L., Church J.T., Gajarski R.J. et al. Pulmonary Hypertension in Patients with Congenital Diaphragmatic Hernia: Does Lung Size Matter? Eur. J. Pediatr. Surg. 2018; 28 (6): 508–514. http://doi.org/10.1055/s-0037-1607291

27. Basurto D., Russo F.M., Papastefanou I. et al. Pulmonary hypertension in congenital diaphragmatic hernia: Antenatal prediction and impact on neonatal mortality. Prenat. Diagn. 2022; 42 (10): 1303–1311. http://doi.org/10.1002/pd.6207

28. Petroze R.T., Caminsky N.G., Trebichavsky J. et al. Prenatal prediction of survival in congenital diaphragmatic hernia: An audit of postnatal outcomes. J. Pediatr. Surg. 2019; 54 (5): 925–931. http://doi.org/10.1016/j.jpedsurg.2019.01.021

29. Moore R.J., Strachan B., Tyler D.J. et al. In vivo diffusion measurements as an indication of fetal lung maturation using echo planar imaging at 0.5T. Magn. Reson. Med. 2001; 45 (2): 247–253. http://doi.org/10.1002/1522-2594(200102)45:2<247::aid-mrm1033>3.0.co;2-m

30. Balassy C., Kasprian G., Brugger P.C. et al. Diffusion-weighted MR imaging of the normal fetal lung. Eur. Radiol. 2008; 18 (4): 700–706. http://doi.org/10.1007/s00330-007-0784-x

31. Cannie M., Jani J., De Keyzer F. et al. Diffusion-weighted MRI in lungs of normal fetuses and those with congenital diaphragmatic hernia. Ultrasound Obstet. Gynecol. 2009; 34 (6): 678–686. http://doi.org/10.1002/uog.7326

32. Manganaro L., Perrone A., Sassi S. et al. Diffusion-weighted MR imaging and apparent diffusion coefficient of the normal fetal lung: preliminary experience. Prenat. Diagn. 2008 Aug;28(8):745–748. http://doi.org/10.1002/pd.2041

33. Afacan O., Gholipour A., Mulkern R.V. et al. Fetal lung apparent diffusion coefficient measurement using diffusion-weighted MRI at 3 Tesla: Correlation with gestational age. J. Magn. Reson. Imaging. 2016; 44 (6): 1650–1655. http://doi.org/10.1002/jmri.25294

34. Ercolani G., Capuani S., Antonelli A. et al. IntraVoxel Incoherent Motion (IVIM) MRI of fetal lung and kidney: Can the perfusion fraction be a marker of normal pulmonary and renal maturation? Eur. J. Radiol. 2021; 139: 109726. http://doi.org/10.1016/j.ejrad.2021.109726

35. Sethi S., Giza S.A., Goldberg E. et al. Quantification of 1.5 T T1 and T2* Relaxation Times of Fetal Tissues in Uncomplicated Pregnancies. J. Magn. Reson. Imaging. 2021; 54 (1): 113–121. http://doi.org/10.1002/jmri.27547

36. Prayer F., Watzenböck M.L., Heidinger B.H. et al. Fetal MRI radiomics: non-invasive and reproducible quantification of human lung maturity. Eur. Radiol. 2023; 33 (6): 4205–4213. http://doi.org/10.1007/s00330-022-09367-1


Review

For citations:


Syrkashev E.M., Burov A.A., Podurovskaya Yu.L., Kadyrberdiyeva F.Z., Ikryannikov E.O., Semenov D.S., Sharova D.E., Vasilev Yu.A., Gus A.I. Radiomics of fetal magnetic resonance imaging in congenital diaphragmatic hernia. Medical Visualization. 2024;28(1):157-167. (In Russ.) https://doi.org/10.24835/1607-0763-1359

Views: 508


ISSN 1607-0763 (Print)
ISSN 2408-9516 (Online)