Preview

Medical Visualization

Advanced search

Modern neuroradiological diagnostic methods for intracranial arterial aneurysms: a review

https://doi.org/10.24835/1607-0763-1283

Abstract

Aim. Analysis of modern neuroimaging methods of intracranial arterial aneurysms with an emphasis on the possibilities of MR imaging of the vessel wall.

Methods. Scientific articles and clinical recommendations from the PubMed from 2012 to 2020 were included into analysis, using keywords: aneurysm, CT, MRI, CFD (computational hydrodynamics), vessel wall imaging. As a result of the search, 137 articles were selected of which 27 articles were used in the review, supplemented by 10 articles from the reference lists 1990–2012.

Results. Modern possibilities of intracranial arterial aneurysms imaging were demonstrated, with particular attention to the advantages of the method of MR imaging of the vessel wall. The main technical aspects of MR vessel wall imaging were demonstrated.

Conclusion. Modern CT and MR imaging can provide additional information about the processes occurring in the lumen of the aneurysm and its wall. This information can be a key factor in the neurosurgical patient management.

About the Authors

K. S. Semin
N.N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Healthcare of Russia
Russian Federation

Kirill S. Semin – post-graduate student Department of X-ray and Radioisotope Diagnostic Methods

 16, 4rd Tverskaya-Yamskaya str., Moscow 125047, Russian Federation 



I. N. Pronin
N.N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Healthcare of Russia
Russian Federation

Igor N. Pronin – Academician of the Russian Academy of  Sciences, Doct. of Sci. (Med.), Professor, Head of the  Department of X-ray and Radioisotope Diagnostic Methods 

 16, 4rd Tverskaya-Yamskaya str., Moscow 125047, Russian Federation 



Sh. Sh. Eliava
N.N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Healthcare of Russia
Russian Federation

Shalva Sh. Eliava – Doct. of Sci. (Med.), Professor, Head of the neurovascular Department  

 16, 4rd Tverskaya-Yamskaya str., Moscow 125047, Russian Federation 



A. N. Konovalov
N.N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Healthcare of Russia
Russian Federation

Anton N. Konovalov – Cand. of Sci. (Med.), neurosurgeon of the neurovascular Department 

 16, 4rd Tverskaya-Yamskaya str., Moscow 125047, Russian Federation 



A. I. Batalov
N.N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Healthcare of Russia
Russian Federation

Artem I. Batalov – Cand. of Sci. (Med.), researcher of Department of X-ray and Radioisotope Diagnostic Methods 

 16, 4rd Tverskaya-Yamskaya str., Moscow 125047, Russian Federation 



N. E. Zakharova
N.N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Healthcare of Russia
Russian Federation

Natalia E. Zakharova – Doct. of Sci. (Med.), Professor of Russian Academy of Science, professor of Department of X-ray and Radioisotope Diagnostic Methods 

 16, 4rd Tverskaya-Yamskaya str., Moscow 125047, Russian Federation 



References

1. Etminan N., Chang H.S., Hackenberg K. et al. Worldwide Incidence of Aneurysmal Subarachnoid Hemorrhage According to Region, Time Period, Blood Pressure, and Smoking Prevalence in the Population: A Systematic Review and Meta-analysis. JAMA Neurol. 2019; 76 (5): 588–597. https://doi.org/10.1001/jamaneurol.2019.0006

2. Robert J.S., Christopher S.O., Guy R. Unruptured intracranial aneurysms [media]. UpToDate Feb 11, 2020. Accessed December 21. https://www.uptodate.com/contents/unruptured-intracranial-aneurysms?search=Unruptured%20intracranial%20aneurysms&source=search_result&selectedTitle=1~150&usage_type=default&display_rank=1

3. Oppenheim C., Domigo V., Gauvrit J.Y. et al. Subarachnoid hemorrhage as the initial presentation of dural sinus thrombosis. Am. J. Neuroradiol. 2005; 26 (3): 614–617.

4. Vernooij M.W., Ikram M.A., Tanghe H.L. et al. Incidental findings on brain MRI in the general population. N. Engl. J. Med. 2007; 357 (18): 1821–1828. https://doi:10.1056/NEJMoa070972

5. Rosi Junior J., Gomes dos Santos A., da Silva S.A. et al. Multiple and mirror intracranial aneurysms: study of prevalence and associated risk factors. Br. J. Neurosurg. 2021; 35 (6): 780–784. https://doi.org/10.1080/02688697.2020.1817849

6. Kassell N.F., Torner J.C., Haley E.C. et al. The International Cooperative Study on the Timing of Aneurysm Surgery. Part 1: Overall management results. J. Neurosurg. 1990; 73 (1): 18–36. https://doi:10.3171/jns.1990.73.1.0018

7. Schievink W.I. Intracranial aneurysms. N. Engl. J. Med. 1997; 336 (1): 28–40. https://doi:10.1056/NEJM199701023360106

8. Rosi J., Telles J.P.M., da Silva S.A. et al. Epidemiological analysis of 1404 patients with intracranial aneurysm followed in a single Brazilian institution. Surg. Neurol. Int. 2019; 10: 249. https://doi:10.25259/SNI_443_2019

9. Thompson B.G., Brown R.D., Amin-Hanjani S. et al. Guidelines for the Management of Patients With Unruptured Intracranial Aneurysms: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke. 2015; 46 (8): 2368–2400. https://doi.org/10.1161/STR.0000000000000070

10. Zhao J., Lin H., Summers R. et al. Current Treatment Strategies for Intracranial Aneurysms: An Overview. Angiology. 2018; 69 (1): 17–30. https://doi.org/10.1177/0003319717700503

11. Loh C., Vadera S. Charcot-Bouchard aneurysm [media]. Radiopaedia.org. 2015. Accessed January 2022. https://doi.org/10.53347/rid-40553

12. Kuo I., Long T., Nguyen N. et al. Ruptured intracranial mycotic aneurysm in infective endocarditis: A natural history. Case Rep. Med. 2010; 2010: 168408. https://doi.org/10.1155/2010/168408

13. Bohmfalk G.L., Story J.L., Wissinger J.P. et al. Bacterial intracranial aneurysm. J. Neurosurg. 1978; 48 (3): 369–382. https://doi:10.3171/jns.1978.48.3.0369

14. Wang X., Chen G., Li M. et al. Rapid formation and rupture of an infectious basilar artery aneurysm from meningitis following suprasellar region meningioma removal: A case report. BMC Neurol. 2020; 20 (1). https://doi.org/10.1186/s12883-020-01673-9

15. Tambuzzi S., Boracchi M., Maciocco F. et al. Fungal aneurism of the right posterior inferior cerebellar artery (PICA). Med. Mycol. Case Rep. 2019; 26: 25–27. https://doi.org/10.1016/j.mmcr.2019.09.004

16. Mocco J., Brown R.D., Torner J.C. et al. Aneurysm morphology and prediction of rupture: An international study of unruptured intracranial aneurysms analysis. Neurosurgery. 2018; 82 (4): 491–495. https://doi.org/10.1093/neuros/nyx226

17. Lee U.Y., Jung J., Kwak H.S. et al. Wall shear stress and flow patterns in unruptured and ruptured anterior communicating artery aneurysms using computational fluid dynamics. J. Korean Neurosurg. Soc. 2018; 61 (6): 689–699. https://doi.org/10.3340/jkns.2018.0155

18. Shiba M., Ishida F., Furukawa K. et al. Relationships of Morphologic Parameters and Hemodynamic Parameters Determined by Computational Fluid Dynamics Analysis with the Severity of Subarachnoid Hemorrhage. J. Neuroend. Ther. 2017; 11 (10): 512–519. https://doi.org/10.5797/jnet.oa.2016-0099

19. Rajabzadeh-Oghaz H., van Ooij P., Veeturi S.S. et al. Interpatient variations in flow boundary conditions at middle cerebral artery from 7T PC-MRI and influence on Computational Fluid Dynamics of intracranial aneurysms. Comput. Biol. Med. 2020; 120: 103759. https://doi.org/10.1016/j.compbiomed.2020.103759

20. Murray C.D. The physiological principle of minimum work applied to the angle of branching of arteries. J. Gen. Physiol. 1926; 9 (6): 835–841.

21. Majigsuren M., Abe T., Kageji T. et al. Comparison of brain tumor contrast-enhancement on t1-cube and 3d-spgr images. Magn. Reson. Med. Sci. 2016; 15 (1): 34–40. https://doi.org/10.2463/mrms.2014-0129

22. Hartman J.B., Watase H., Sun J. et al. Intracranial aneurysms at higher clinical risk for rupture demonstrate increased wall enhancement and thinning on multicontrast 3D vessel wall MRI. Br. J. Radiol. 2019; 92 (1096). https://doi.org/10.1259/bjr.20180950

23. Lv N., Karmonik C., Chen S. et al. Relationship between Aneurysm Wall Enhancement in Vessel Wall Magnetic Resonance Imaging and Rupture Risk of Unruptured Intracranial Aneurysms. Neurosurgery. 2019; 84 (6): E385–E391. https://doi.org/10.1093/neuros/nyy310

24. Omodaka S., Endo H., Niizuma K. et al. Circumferential wall enhancement on magnetic resonance imaging is useful to identify rupture site in patients with multiple cerebral aneurysms. Neurosurgery. 2018; 82 (5): 638–644. https://doi.org/10.1093/neuros/nyx267

25. Wang G.X., Wen L., Lei S. et al. Wall enhancement ratio and partial wall enhancement on MRI associated with the rupture of intracranial aneurysms. J. Neurointerv. Surg. 2018; 10 (6): 569–573. https://doi.org/10.1136/neurintsurg-2017-013308

26. Matsushige T., Shimonaga K., Mizoue T. et al. Lessons from vessel wall imaging of intracranial aneurysms: New era of aneurysm evaluation beyond morphology. Neurol. Med. Chir. 2019; 59 (11): 407–414. https://doi.org/10.2176/nmc.ra.2019-0103

27. Frösen J., Piippo A., Paetau A. et al. Remodeling of saccular cerebral artery aneurysm wall is associated with rupture: Histological analysis of 24 unruptured and 42 ruptured cases. Stroke. 2004; 35 (10): 2287–2293. https://doi.org/10.1161/01.STR.0000140636.30204.da

28. Medvedev Yu.A., Matsko D.E. Aneurysms and malformations of cerebral vessels. Etiology. Pathogenesis. Classification. Pathological anatomy: RNHI, 1993. (In Russian)

29. Larsen N., Flüh C., Saalfeld S. et al. Multimodal validation of focal enhancement in intracranial aneurysms as a surrogate marker for aneurysm instability. Neuroradiology. 2020; 62 (12): 1627–1635. https://doi.org/10.1007/s00234-020-02498-6

30. Sato T., Matsushige T., Chen B. et al. Wall contrast enhancement of thrombosed intracranial aneurysms at 7T MRI. Am. J. Neuroradiol. 2019; 40 (7): 1106–1111. https://doi.org/10.3174/ajnr.A6084

31. Samaniego E.A., Roa J.A., Hasan D. Vessel wall imaging in intracranial aneurysms. J. Neurointerv. Surg. 2019; 11 (11): 1105–1112. https://doi.org/10.1136/neurintsurg-2019-014938

32. Hoh B.L., Hosaka K., Downes D.P. et al. Stromal cellderived factor-1 promoted angiogenesis and inflammatory cell infiltration in aneurysm walls: Laboratory investigation. J. Neurosurg. 2014; 120 (1): 73–86. https://doi.org/10.3171/2013.9.JNS122074

33. Ollikainen E., Tulamo R., Frösen J. et al. Mast Cells, Neovascularization, and Microhemorrhages are Associated With Saccular Intracranial Artery Aneurysm Wall Remodeling. J. Neuropathol. Exp. Neurol. 2014; 73 (9): 855–864. https://academic.oup.com/jnen/article/73/9/855/2917690

34. Hasan D., Chalouhi N., Jabbour P. et al. Early change in ferumoxytol-enhanced magnetic resonance imaging signal suggests unstable human cerebral aneurysm: A pilot study. Stroke. 2012; 43 (12): 3258–3265. https://doi.org/10.1161/STROKEAHA.112.673400

35. Weng T.I., Chen H.J., Lu C.W. et al. Exposure of Macrophages to Low-Dose Gadolinium-Based Contrast Medium: Impact on Oxidative Stress and Cytokines Production. Contrast. Media Mol. Imaging. 2018; 2018:3535769. https://doi.org/10.1155/2018/3535769

36. Korkmaz E., Kleinloog R., Verweij B.H. et al. Comparative ultrastructural and stereological analyses of unruptured and ruptured saccular intracranial aneurysms. Neuropathol. Exp. Neurol. 2017; 76 (10): 908–916. https://doi.org/10.1093/jnen/nlx075

37. Hickey M.M., Simon M.C. Regulation of Angiogenesis by Hypoxia and Hypoxia-Inducible Factors. Curr. Top. Dev. Biol. 2006; 76: 217–257. https://doi.org/10.1016/S0070-2153(06)76007-0


Review

For citations:


Semin K.S., Pronin I.N., Eliava Sh.Sh., Konovalov A.N., Batalov A.I., Zakharova N.E. Modern neuroradiological diagnostic methods for intracranial arterial aneurysms: a review. Medical Visualization. 2023;27(1):11-18. (In Russ.) https://doi.org/10.24835/1607-0763-1283

Views: 433


ISSN 1607-0763 (Print)
ISSN 2408-9516 (Online)