Imaging of cervical cancer. Consensus of experts
https://doi.org/10.24835/1607-0763-1341
Abstract
The article offers the latest view on possibilities of diagnostic algorithm to identify cervical cancer (CC), one of the most incidental tumor of the woman’s reproductive system. The algorithm is described as a consensus of leading expert in imaging diagnostics, as well as oncogynecologysts, investigating diagnostic challenges and cervical cancer therapies. The article sets forth the principal trends in using imaging methods, their role and possibilities for staging CC, planning and assessing the efficacy of applied therapy, on-going surveillance over patients, who have undergone specialized anti-cancer treatment.
About the Authors
N. A. RubtsovaRussian Federation
Natalia A. Rubtsova – Doct. of Sci. (Med.), Head of the department of radiation diagnostics
3, 2nd Botkinsky proezd, Moscow 125284
T. P. Berezovskaia
Russian Federation
Tatiana P. Berezovskaia – Doct. of Sci. (Med.), Professor, Head of the MRI department
10, Zhukov str., Obninsk 249031, Kaluga region
V. G. Bychenko
Russian Federation
Vladimir G. Bychenko – Cand. of Sci. (Med.), Head of radiation diagnostics department
4, Akademika Oparina str., Moscow 117997
E. A. Pavlovskaya
Russian Federation
Evgenya A. Pavlovskaya – Cand. of Sci. (Med.), Radiologist
68, Leningradskaya str., Pesochny, Saint- Petersburg 197758
A. E. Solopova
Russian Federation
Alina E. Solopova – Doct. of Sci. (Med.), Senior Researcher of the radiation diagnostics department
4, Akademika Oparina str., Moscow 117997
T. A. Agababyan
Russian Federation
Tatev A. Agababyan – Cand. of Sci. (Med.), Head of radiation diagnostics department
10, Zhukov str., Obninsk 249031, Kaluga region
M. M. Khodzhibekova
Russian Federation
Malika M. Khodzhibekova – Doct. of Sci. (Med.), Radiologist of the Radionuclide Diagnostics Department
3, 2nd Botkinsky proezd, Moscow 125284
D. V. Ryzhkova
Russian Federation
Daria V. Ryzhkova – Doct. of Sci. (Med.), Professor, Chief Researcher of research department of nuclear medicine and theranostics of the institute of oncology and hematology, Head of the scientific and clinical association of nuclear medicine, head of the department of nuclear medicine and radiation technologies with the clinic of the institute of medical education of the Almazov Center
2, Akkuratova str., Saint-Petersburg 197341
M. A. Chekalova
Russian Federation
Marina A. Chekalova – Doct. of Sci. (Med.), Professor, doctor of ultrasonic diagnostics of Federal Scientific and Clinical Center for Special Types of Medical Care and Medical Technologies The Federal Medical Biological Agency (FMBA of Russia); Professor, The Peoples' Friendship University of Russia
30, Volokolamskoye shosse, Moscow 125310
I. E. Meshkova
Russian Federation
Irina E. Meshkova – Cand. of Sci. (Med.), ultrasound diagnostic doctor, gynecological oncologist
68, Leningradskaya str., Pesochny, Saint- Petersburg 197758
V. E. Gazhonova
Russian Federation
Veronica E. Gazhonova – Doct. of Sci. (Med.), Professor, Head of the ultrasound angiography room, ultrasound diagnostics doctor
19, bld. 1А, Marshal Timoshenko str., Moscow 121359
A. I. Gus
Russian Federation
Alexandr I. Gus – Doct. of Sci. (Med.), Professor, Chief Researcher of department of ultrasound and functional diagnostics, visual diagnostics department
4, Akademika Oparina str., Moscow 117997
S. S. Bagnenko
Russian Federation
Sergey S. Bagnenko – Doct. of Sci. (Med.), associate Professor, Head of the scientific department, Leading Researcher of the scientific department of diagnostic and interventional radiology
68, Leningradskaya str., Pesochny, Saint- Petersburg 197758
B. M. Medvedeva
Russian Federation
Bela M. Medvedeva – Doct. of Sci. (Med.), Professor, Head of the department of X-ray diagnostics, Leading Researcher
23, Kashirskoe shosse, Moscow 115478
L. A. Ashrafyan
Russian Federation
Levon A. Ashrafyan – Academician of the Russian Academy of Sciences, Doct. of Sci. (Med.), Professor, Deputy Director
4, Akademika Oparina str., Moscow 117997
E. G. Novikova
Russian Federation
Elena G. Novikova – Doct. of Sci. (Med.), Professor, Deputy Head of the Department of Tumors of the Reproductive and Urinary Organs
3, 2nd Botkinsky proezd, Moscow 125284
I. V. Berlev
Russian Federation
Igor V. Berlev – Doct. of Sci. (Med.), Professor, Head of the department of oncogynecology
68, Leningradskaya str., Pesochny, Saint- Petersburg 197758
L. V. Demidova
Russian Federation
Ludmila V. Demidova – Doct. of Sci. (Med.), Leading Researcher of the department of radiation therapy
3, 2nd Botkinsky proezd, Moscow 125284
L. I. Krikunova
Russian Federation
Lyudmola I. Krikunova – Doct. of Sci. (Med.), Professor, Сhief scientific officer of the Department of Radiation and Combined Methods of Treatment of Gynecological Diseases with the Group of Restorative and Aesthetic Medicine
10, Zhukov str., Obninsk 249031, Kaluga region
L. A. Kolomiets
Russian Federation
Larisa A. Kolomiets – Doct. of Sci. (Med.), Professor, Head of the department of gynecology
5, Kooperativny per., Tomsk 634009
References
1. FIGO Committee on Gynecologic Oncology. Revised FIGO staging for carcinoma of the vulva, cervix, and endometrium. Int. J. Gynaecol. Obstet. 2009; 105 (2): 103–104. http://doi.org/10.1016/j.ijgo.2009.02.012
2. FIGO Committee on Gynecologic Oncology. Revised FIGO staging for carcinoma of the cervix uteri. Int. J. Gynaecol. Obstet. 2019; 145 (1): 129–135. http://doi.org/10.1002/ijgo.12749
3. Bhatla N., Aoki D., Sharma D.N., Sankaranarayanan R. Cancer of the cervix uteri. Int. J. Gynaecol. Obstet. 2018; 143 (Suppl. 2): 22–36. http://doi.org/10.1002/ijgo.12611
4. Berek J.S., Matsuo K., Grubbs B.H. et al. Multidisciplinary perspectives on newly revised 2018 FIGO staging of cancer of the cervix uteri. J. Gynecol. Oncol. 2019; 30 (2): e40. http://doi.org/10.3802/jgo.2019.30.e40
5. Bhatla N., Aoki D., Sharma D.N., Sankaranarayanan R. Corrigendum to “Revised FIGO staging for carcinoma of the cervix uteri”. Int. J. Gynecol. Obstet. 2019; 145: 129–135. http://doi.org/10.1002/ijgo.12969
6. Lee S.I., Atri M. 2018 FIGO staging system for uterine cervical cancer: enter cross-sectional imaging. Radiology. 2019; 292 (1): 15–24. http://doi.org/10.1148/radiol.2019190088
7. Olawaiye A.B., Baker T.P., Washington M.K., Mutch D.G. The new (Version 9) American Joint Committee on Cancer tumor, node, metastasis staging for cervical cancer. CA Cancer J. Clin. 2021; 71 (4): 287–298. http://doi.org/10.3322/caac.21663
8. FIGO CANCER REPORT 2021 Cancer of the cervix uteri: 2021 update International Journal of Obstetrics and Gynaecology. 155 (S1). Special Issue: FIGO Cancer Report 2021 October: 28–44. https://doi.org/10.1002/ijgo.13967
9. Clinical guidelines approved by the scientific council of the Ministry of Health of the Russian Federation, Cervical Cancer, 2020, 48 p. (In Russian) https://oncology.ru/specialist/treatment/references/actual/537.pdf?ysclid=lp6m9w7k57670993368
10. Tian Y., Luo H. Diagnostic accuracy of transvaginal ultrasound examination for local staging of cervical cancer: a systematic review and meta-analysis. Med. Ultrason. 2022; 24 (3): 348–355. http://doi.org/10.11152/mu-3246
11. Cibula D., Pötter R., Planchamp F. et al. The European Society of Gynaecological Oncology/European Society for Radiotherapy and Oncology/European Society of Pathology Guidelines for the Management of Patients With Cervical Cancer. Int. J. Gynecol. Cancer. 2018; 28 (4): 641–655. http://doi.org/10.1097/IGC.0000000000001216
12. Marth C., Landoni F., Mahner S. et al.; ESMO Guidelines Committee. Cervical cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2017; 28 (Suppl_4): iv72–iv83. http://doi.org/10.1093/annonc/mdx220
13. Chino J., Annunziata C.M., Beriwal S. et al. Radiation Therapy for Cervical Cancer: Executive Summary of an ASTRO Clinical Practice Guideline. Pract. Radiat. Oncol. 2020; 10 (4): 220–234. http://doi.org/10.1016/j.prro.2020.04.002
14. Hricak H., Gatsonis C., Chi D.S. et al. Role of imaging in pretreatment evaluation of early invasive cervical cancer: results of the intergroup study American College of Radiology Imaging Network 6651-Gynecologic Oncology Group 183. J. Clin. Oncol. 2005; 23 (36): 9329–9337. http://doi.org/10.1200/JCO.2005.02.0354
15. Xiao M., Yan B., Li Y. et al. Diagnostic performance of MR imaging in evaluating prognostic factors in patients with cervical cancer: a meta-analysis. Eur. Radiol. 2020; 30 (3): 1405–1418. http://doi.org/10.1007/s00330-019-06461-9
16. Thomeer M.G., Gerestein C., Spronk S. et al. Clinical examination versus magnetic resonance imaging in the pretreatment staging of cervical carcinoma:systematic review and meta-analysis. Eur. Radiol. 2013; 23: 2005–2018. http://doi.org/10.1007/s00330-013-2783-4
17. Manganaro L., Lakhman Y., Bharwani N. et al. Staging, recurrence and follow-up of uterine cervical cancer using MRI: Updated Guidelines of the European Society of Urogenital Radiology after revised FIGO staging 2018. Eur. Radiol. 2021; 31 (10): 7802–7816. http://doi.org/10.1007/s00330-020-07632-9. Erratum in: Eur. Radiol. 2021 Jun 17. PMID: 33852049
18. Bourgioti C., Chatoupis K., Moulopoulos L.A. Current imaging strategies for the evaluation of uterine cervical cancer. Wld J. Radiol. 2016; 8 (4): 342–354. http://doi.org/10.4329/wjr.v8.i4.342
19. Nogami Y., Iida M., Banno K. et al. Application of FDG-PET in cervical cancer and endometrial cancer: utility and future prospects. Anticancer Res. 2014; 34 (2): 585–592. PMID: 24510987
20. Mirpour S., Mhlanga J., Logeswaran P. et al. The role of PET/CT in the management of cervical cancer. Am. J. Roentgenol. 2013; 201 (2): W192–205. http://doi.org/10.2214/AJR.12.9830
21. Choi H.J., Ju W., Myung S.K., Kim Y. Diagnostic performance of computer tomography, magnetic resonance imaging, and positron emission tomography or positron emission tomography/computer tomography for detection of metastatic lymph nodes in patients with cervical cancer: meta-analysis. Cancer Sci. 2010; 101 (6): 1471–1479. http://doi.org/10.1111/j.1349-7006.2010.01532.x
22. Liu B., Gao S., Li S. A comprehensive comparison of CT, MRI, positron emission tomography or positron emission tomography/ CT, and diffusion weighted imaging-MRI for detecting the lymph nodes metastases in patients with cervical cancer: a metaanalysis based on 67 studies. Gynecol. Obstet Invest. 2017; 82 (3): 209–222. http://doi.org/10.1159/000456006
23. Ruan J., Zhang Y., Ren H. Meta-analysis of PET/CT Detect Lymph Nodes Metastases of Cervical Cancer. Open Med. (Wars.) 2018; 13: 436–442. http://doi.org/10.1515/med-2018-0065
24. Young P., Daniel B., Sommer G. et al. Intravaginal gel for staging of female pelvic cancers–preliminary report of safety, distention, and gel-mucosal contrast during magnetic resonance examination. J. Comput. Assist. Tomogr. 2012; 36 (2): 253–256. http://doi.org/10.1097/RCT.0b013e3182483c05
25. Van Hoe L., Vanbeckevoort D., Oyen R. et al. Cervical carcinoma: optimized local staging with intravaginal contrast-enhanced MR imaging–preliminary results. Radiology. 1999; 213 (2): 608–611. http://doi.org/10.1148/radiology.213.2.r99oc23608
26. Akata D., Kerimoglu U., Hazirolan T. et al. Efficacy of transvaginal contrast-enhanced MRI in the early staging of cervical carcinoma. Eur. Radiol. 2005; 15 (8): 1727–1733. https://doi.org/10.1007/s00330-005-2645-9
27. Li X., Wang L., Li Y., Song P. The value of diffusionweighted imaging in combination with conventional magnetic resonance imaging for improving tumor detection for early cervical carcinoma treated with fertility-sparing surgery. Int. J. Gynecol. Cancer. 2017; 27 (8):1761–1768. http://doi.org/10.1097/IGC.0000000000001113
28. Woo S., Moon M.H., Cho J.Y. et al. Diagnostic performance of MRI for assessing parametrial invasion in cervical cancer: a head-to-head comparison between oblique and true axial T2-weighted images. Korean J. Radiol. 2019; 20 (3): 378–384. http://doi.org/10.3348/kjr.2018.0248
29. Hori M., Kim T., Onishi H. et al Uterine tumors: comparison of 3D versus 2D T2-weighted turbo spin-echo MR imaging at 3.0 T-initial experience. Radiology. 2011; 258 (1): 154–163. http://doi.org/10.1148/radiol.10100866
30. Hwang J., Hong S.S., Kim H.J. et al. Reduced field-of-view diffusion-weighted MRI in patients with cervical cancer. Br. J. Radiol. 2018; 91 (1087): 20170864. http://doi.org/10.1259/bjr.20170864
31. Huang J.-W., Song J.-C., Chen T. et al. Making the invisible visible: improving detectability of MRI-invisible residual cervical cancer after conisation by DCE-MRI. Clin. Radiol. 2019; 74 (2): 166.e15–166.e21. http://doi.org/10.1016/j.crad.2018.10.013
32. Bermudez A., Bhatla N., Leung E. FIGO cancer report 2015. Cancer of the cervix uteri. Int. J. Gynecol. Obstet. 2015; 131: S88–95. http://doi.org/10.1016/j.ijgo.2015.06.004
33. Bentivegna E., Gouy S., Maulard A. et al. Oncological outcomes after fertility-sparing surgery for cervical cancer: a systematic review. Lancet Oncol. 2016; 17 (6): e240–e253. http://doi.org/10.1016/S1470-2045(16)30032-8
34. Zhang Q., Li W., Kanis M.J. et al. Oncologic and obstetrical outcomes with fertility-sparing treatment of cervical cancer: a systematic review and meta-analysis. Oncotarget. 2017; 8 (28): 46580–46592. http://doi.org/10.18632/oncotarget.16233
35. Bentivegna E., Maulard A., Pautier P. et al. Fertility results and pregnancy outcomes after conservative treatment of cervical cancer: a systematic review of the Literature. Fertil Steril. 2016; 106 (5): 1195–1211.e5. https://doi.org/10.1016/j.fertnstert.2016.06.032
36. Koh W.J., Abu-Rustum N.R., Bean S. et al. Cervical Cancer, Version 3.2019, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Canc. Netw. 2019; 17 (1): 64–84. http://doi.org/10.6004/jnccn.2019.0001
37. Engin G. Cervical cancer: MR imaging findings before, during, and after radiation therapy. Eur. Radiol. 2006; 16 (2): 313–324. http://doi.org/10.1007/s00330-005-2804-z
38. Hricak H., Yu K.K. Radiology in invasive cervical cancer. Am. J. Roentgenol. 1996; 167: 1101–1108. http://doi.org/10.2214/ajr.167.5.8911159
39. Lakhman Y., Akin O., Park K.J. et al. Stage IB1 cervical cancer: role of preoperative MR imaging in selection of patients for fertility-sparing radical trachelectomy. Radiology. 2013; 269 (1): 149–158. https://doi.org/10.1148/radiol.13121746
40. Noël P., Dubé M., Plante M., St-Laurent G. Early cervical carcinoma and fertility-sparing treatment options: MR imaging as a tool in patient selection and a follow-upmodality. Radiographics. 2014; 34 (4): 1099–1119. https://doi.org/10.1148/rg.344130009
41. Downey K., Attygalle A.D., Morgan V.A. et al. Comparison of optimised endovaginal vs external array coil T2-weighted and diffusion-weighted imaging techniques for detecting suspected early stage (IA/IB1) uterine cervical cancer. Eur. Radiol. 2016; 26 (4): 941–950. http://doi.org/10.1007/s00330-015-3899-5
42. DeSouza N.M., Rockall A., Freeman S. Functional MR imaging in gynecologic cancer. Magn. Reson. Imaging Clin. N. Am. 2016; 24 (1): 205–222. http://doi.org/10.1016/j.mric.2015.08.008
43. Woo S., Suh C.H., Kim S.Y. et al. Magnetic resonance imaging for detection of parametrial invasion in cervical cancer: an updated systematic review and meta-analysis of the literature between 2012 and 2016. Eur. Radiol. 2018; 28 (2): 530–541. http://doi.org/10.1007/s00330-017-4958-x
44. Park J.J., Kim C.K., Park S.Y., Park B.K. Parametrial invasion in cervical cancer: fused T2-weighted imaging and high-b-value diffusion-weighted imaging with background body signal suppression at 3 T. Radiology. 2015; 274 (3): 734–741. http://doi.org/10.1148/radiol.14140920
45. Sala E., Rockall A.G., Freeman S.J. et al. The Added Role of MR Imaging in Treatment Stratification of Patients with Gynecologic Malignancies: What the Radiologist Needs to Know. Radiology. 2013; 266: 717–740. http://doi.org/10.1148/radiol.12120315
46. Raithatha A., Papadopoulou I., Stewart V. et al. Cervical cancer staging: a resident’s primer: women’s imaging. Radiographics. 2016; 36 (3): 933–934. http://doi.org/10.1148/rg.2016150173
47. Eisenhauer E.A., Therasse P., Bogaerts J. et. al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer. 2009; 45 (2): 228–247. http://doi.org/10.1016/j.ejca.2008.10.026
48. Zhang A., Song J., Ma Z., Chen T. Application of apparent diffusion coefficient values derived from diffusion-weighted imaging for assessing different sized metastatic lymph nodes in cervical cancers. Acta Radiol. 2020; 61 (6): 848–855. https://doi.org/10.1177/0284185119879686
49. Qi Y.F., He Y.L., Lin C.Y. et al. Diffusion-weighted imaging of cervical cancer: Feasibility of ultra-high b-value at 3T. Eur. J. Radiol. 2020; 124: 108779. http://doi.org/10.1016/j.ejrad.2019.108779
50. Elsholtz F.H.J., Asbach P., Haas M. et al. Introducing the Node Reporting and Data System 1.0 (Node-RADS): a concept for standardized assessment of lymph nodes in cancer. Eur. Radiol. 2021; 31 (8): 6116–6124. https://doi.org/10.1007/s00330-020-07572-4
51. Wong T.Z., Jones E.L., Coleman R.E. Positron emission tomography with 2-deoxy-2-[(18)F]fluoro-D-glucose for evaluating local and distant disease in patients with cervical cancer. Mol. Imaging Biol. 2004; 6 (1): 55–62. http://doi.org/10.1016/j.mibio.2003.12.004
52. Hameeduddin A., Sahdev A. Diffusion-weighted imaging and dynamic contrast-enhanced MRI in assessing response and recurrent disease in gynaecological malignancies. Cancer Imaging. 2015; 15 (1): 3. http://doi.org/10.1186/s40644-015-0037-1
53. Young H., Baum R., Cremerius U. et al. Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. European Organization for Research and Treatment of Cancer (EORTC) PET Study Group. Eur. J. Cancer. 1999; 35 (13): 1773–1782. http://doi.org/10.1016/s0959-8049(99)00229-4
54. Wang X., Koch S. Positron emission tomography/ computed tomography potential pitfalls and artifacts. Curr. Probl. Diagn. Radiol. 2009; 38 (4): 156–169. http://doi.org/10.1067/j.cpradiol.2008.01.001
55. Amit A., Person O., Keidar Z. FDG PET/CT in monitoring response to treatment in gynecological malignancies. Curr. Opin. Obstet. Gynecol. 2013; 25 (1): 17–22. http://doi.org/10.1097/GCO.0b013e32835a7e96
56. American College of Radiology ACR Appropriateness Criteria: Pretreatment Planning of Invasive Cancer of the Cervix. https://acsearch.acr.org/docs/69461/Narrative/
57. Moore K.N., Herzog T.J., Lewin S. et al. A comparison of cisplatin/paclitaxel and carboplatin/paclitaxel in stage IVB, recurrent or persistent cervical cancer. Gynecol. Oncol. 2007; 105 (2): 299–303. http://doi.org/10.1016/j.ygyno.2006.12.031
58. Lorusso D., Petrelli F., Coinu A. et al. A systematic review comparing cisplatin and carboplatin plus paclitaxel-based chemotherapy for recurrent or metastatic cervical cancer. Gynecol. Oncol. 2014; 133 (1): 117–123. http://doi.org/10.1016/j.ygyno.2014.01.042
59. Bodurka-Bevers D., Morris M., Eifel P.J. et al. Posttherapy surveillance of women with cervical cancer: an outcomes analysis. Gynecol. Oncol. 2000; 78 (2): 187–193. http://doi.org/10.1006/gyno.2000.5860.
60. Scottish Intercollegiate Guidelines Network. Management of cervical cancer/ (SIGN guideline no 99) 2008; National Comprehensive Cancer Network (NCCN) guidelines for cervical cancer/ 2022
Review
For citations:
Rubtsova N.A., Berezovskaia T.P., Bychenko V.G., Pavlovskaya E.A., Solopova A.E., Agababyan T.A., Khodzhibekova M.M., Ryzhkova D.V., Chekalova M.A., Meshkova I.E., Gazhonova V.E., Gus A.I., Bagnenko S.S., Medvedeva B.M., Ashrafyan L.A., Novikova E.G., Berlev I.V., Demidova L.V., Krikunova L.I., Kolomiets L.A. Imaging of cervical cancer. Consensus of experts. Medical Visualization. 2024;28(1):141-156. (In Russ.) https://doi.org/10.24835/1607-0763-1341