Non-invasive measurement of oxygen metabolism. Part 1: Historical review and state of the art
https://doi.org/10.24835/1607-0763-1297
Abstract
Oxygen metabolism is a key factor in the life of a living organism. The article is the first part of a review of methods for measuring oxygen metabolism.
Purpose. The aim of this review is to present an insight into the evolution of methods for measuring oxygen metabolism in a way from global to local measurement of brain perfusion. The role of the 15O isotope as the “gold standard” for measuring oxygen metabolism using positron emission tomography (PET) is described. We also provide a case report of brain tumor perfusion measurements from our clinic.
Materials and methods. More than 200 Pubmed publications were studied with the keywords “positron emission tomography + O-15”. Relevant publications that do not contain these keywords or contain them in a different wording were also analyzed. A clinical case of a brain tumor perfusion using CT perfusion, MR-ASL and PET with H215O is provided.
Results. The evolution of methods for measuring perfusion, oxygen extraction, and oxygen metabolism, is described. More than 50 papers are cited depicting key advances in measurement technologies. Examples of the use of PET with H215O in fundamental research and clinical practice are given.
Conclusion. The obvious value of oxygen-isotope PET data is combined with the invasiveness (in some cases), technical complexity and high cost of the procedure. The second part of the review will be devoted to alternative methods for measuring oxygen metabolism, which are developing in the 21st century and which are intended for wide clinical use.
About the Authors
A. A. PostnovRussian Federation
Andrey A. Postnov – Cand. of Sci. (Phys.-Math.), researcher of Department of X-ray and Radioisotope Diagnostic Methods; assistant professor; project leader; researcher
16, 4rd Tverskaya-Yamskaya str., Moscow 125047;
31, Kashirskoe shosse, Moscow 115230;
46, Varshavskoe shosse, Moscow 115230;
53, Leninsky prospect, Moscow 119991
D. B. Kalaeva
Russian Federation
Diana B. Kalaeva – Medical physicist of the Department of X-ray and Radioisotope Diagnostic Methods; graduate student
16, 4rd Tverskaya-Yamskaya str., Moscow 125047;
31, Kashirskoe shosse, Moscow 115230
A. B. Balakhonov
Russian Federation
Anton B. Balakhonov – Lead Engineer of the Department of X-ray and Radioisotope Diagnostic Methods
16, 4rd Tverskaya-Yamskaya str., Moscow 125047
I. N. Pronin
Russian Federation
Igor’ N. Pronin – Academician of the Russian Academy of Sciences, Doct. of Sci. (Med.), Professor, Head of the Department of X-ray and Radioisotope Diagnostic Methods
16, 4rd Tverskaya-Yamskaya str., Moscow 125047
References
1. Kety S.S., Schmidt C.F. The Nitrous Oxide Method for The Quantitative Determination of Cerebral Blood Flow in Man: Theory, Procedure and Normal Values. J. Clin. Invest. 1948; 27 (4): 476–483. https://doi.org/10.1172/JCI101994
2. Lassen N.A., Munck O. The Cerebral Blood Flow in Man Determined by the Use of Radioactive Krypton. Acta. Physiol. Scand. 1954; 33 (1): 30–49. https://doi.org/10.1111/j.1748-1716.1955.tb01191.x
3. Olsen T.S., Lassen N.A. Blood Flow and Vascular Reactivity During Attacks of Classic Migraine’Limitations of the Xe-133 Intraarterial Technique. Headache J. Head. Face Pain. 1989; 29 (1): 15–20. https://doi.org/10.1111/j.1526-4610.1989.hed2901015.x
4. Ter-Pogossian M.M., Eichling J.O., Davis D.O., Welch M.J. The measure in vivo of regional cerebral oxygen utilization by means of oxyhemoglobin labeled with radioactive oxygen-15. J. Clin. Invest. 1970; 49 (2): 381–391. https://doi.org/10.1172/JCI106247
5. Huang S.C., Carson R.E., Phelps M.E. Measurement of local blood flow and distribution volume with short-lived isotopes: A general input technique. J. Cereb. Blood. Flow. Metab. 1982; 2 (1): 99–108. https://doi.org/10.1038/jcbfm.1982.11
6. Huang S.C., Carson R.E., Hoffman E.J., et al. Quantitative measurement of local cerebral blood flow in humans by positron computed tomography and <sup>15</sup>O-water. J. Cereb. Blood. Flow. Metab. 1983; 3 (2): 141–153. https://doi.org/10.1038/jcbfm.1983.21
7. Lassen N.A. Cerebral Blood Flow and Oxygen Consumption in Man. Physiol. Rev. 1959; 39 (2): 183–238.
8. Harper A.M., Glass H.I., Steven J.L., Granat A.H. The Measurement of Local Blood Flow in the Cerebral Cortex From the Clearance of Xenon-133. J. Neurol. Neurosurg. Psychiatry. 1964; 27: 255–258. https://doi.org/10.1136/jnnp.27.3.255
9. Dollery C.T., West J.B. Regional uptake of radioactive oxygen, carbon monoxide and carbon dioxide in the lungs of patients with mitral stenosis. Circ. Res. 1960; 8: 765–771. https://doi.org/10.1161/01.RES.8.4.765
10. Jones T., Chesler D.A., Ter Pogossian M.M. The continuous inhalation of Oxygen 15 for assessing regional oxygen extraction in the brain of man. Br. J. Radiol. 1976; 49 (580): 339–343. https://doi.org/10.1259/0007-1285-49-580-339
11. Lammertsma A.A., Wise R.J.S., Heather J.D. Correction for the presence of intravascular oxygen-15 in the steady-state technique for measuring regional oxygen extraction ratio in the brain. II. Results in normal subjects and brain tumour and stroke patients. J. Cereb. Blood Flow. Metab. 1983; 3 (4): 425–431. https://doi.org/10.1038/jcbfm.1983.68
12. Lassen N.A., Copenhagen M.D. The luxury-perfusion syndrome and its possible relation to acute metabolic acidosis localised within the brain. Lancet. 1966; 2 (7473): 1113–1115. https://doi.org/10.1016/s0140-6736(66)92199-4
13. Ackerman R.H., Correia J.A., Alpert N.M. et al. Positron Imaging in Ischemic Stroke Disease Using Compounds Labeled With Oxygen 15. Arch. Neurol. 1981; 38 (9): 537. https://doi.org/10.1001/archneur.1981.00510090031002
14. Hakim A.M., Pokrupa R.P., Villanueva J. et al. The Effect of Spontaneous Reperfusion on Metabolic Function in Early Human Cerebral Infarcts. Ann. Neurol. 1987; 21 (3): 279–289. https://doi.org/10.1002/ana.410210310
15. Baron J.C., Bousser M.G., Comar D., Kellershonh C. Human Hemispheric Infarction Studied by Positron Emission Tomography and the 15-O Continous Inhalation Technique. Comput. Tomogr. Published online 1980: 231–237.
16. Baron J.C., Bousser M.G., Rey A., Guillard A., Comar D., Castaigne P. Reversal of focal “misery-perfusion syndrome” by extra-intracranial arterial bypass in hemodynamic cerebral ischemia a case study with <sup>18</sup>O positron emission tomography. Stroke. 1981; 12 (4): 454–459. https://doi.org/10.1161/01.STR.12.4.454
17. Van Oudenhove L., Vandenberghe J., Dupont P. et al. Abnormal regional brain activity during rest and (anticipated) gastric distension in functional dyspepsia and the role of anxiety: A H<sub>2</sub><sup>15</sup>O-PET study. Am. J. Gastroenterol. 2010; 105 (4): 913–924. https://doi.org/10.1038/ajg.2010.39
18. Geeraerts B., Van Oudenhove L., Dupont P., et al. Different regional brain activity during physiological gastric distension compared to balloon distension: A H<sub>2</sub><sup>15</sup>O-PET study. Neurogastroenterol. Motil. 2011; 23 (6): 533–544. https://doi.org/10.1111/j.1365-2982.2010.01642.x
19. Van Oudenhove L., Vandenberghe J., Dupont P. et al. Cortical deactivations during gastric fundus distension in health: Visceral pain-specific response or attenuation of “default mode” brain function? A H<sub>2</sub><sup>15</sup>O-PET study. Neurogastroenterol. Motil. 2009; 21 (3): 259–271. https://doi.org/10.1111/j.1365-2982.2008.01196.x
20. Hamdy S., Rothwell J.C., Brooks D.J. et al. Identification of the cerebral loci processing human swallowing with H<sub>2</sub><sup>15</sup>O PET activation. J. Neurophysiol. 1999; 81 (4): 1917–1926. https://doi.org/10.1152/jn.1999.81.4.1917
21. Prevett M.C., Duncan J.S., Jones T. et al. Demonstration of thalarnic activation during typical absence seizures using H<sub>2</sub><sup>15</sup>O and pet. Neurology. 1995; 45 (7): 1396–1402. https://doi.org/10.1212/WNL.45.7.1396
22. Bolding M.S., White D.M., Hadley J.A. et al. Antipsychotic drugs alter functional connectivity between the medial frontal cortex, hippocampus, and nucleus accumbens as measured by H<sub>2</sub><sup>15</sup>O PET. Front Psychiatry. 2012; 3 (DEC). https://doi.org/10.3389/fpsyt.2012.00105
23. Friston K.J., Holmes A.P., Worsley K.J. et al. Statistical Parametric Maps in Functional Imaging: A General Linear Approach. Hum. Brain Mapp. 1995; 2 (4): 189–210. https://doi.org/10.1002/hbm.460020402
24. Braun A.R., Balkin T.J., Wesensten N.J. et al. Regional cerebral blood flow throughout the sleep-wake cycle. An H<sub>2</sub><sup>15</sup>O PET study. Brain. 1997; 120 (7): 1173–1197. https://doi.org/10.1093/brain/120.7.1173
25. Narayana S., Hichwa R.D., Ponto L.L.B. et al. Dosimetry of [<sup>15</sup>O] water: A physiologic approach. Med. Phys. 1996; 23: 159. https://doi.org/10.1118/1.597793
26. Bie-Olsen L.G., Kjaer T.W., Pedersen-Bjergaard U. et al. Changes of cognition and regional cerebral activity during acute hypoglycemia in normal subjects: A H<sub>2</sub><sup>15</sup>O positron emission tomographic study. J. Neurosci. Res. 2009; 87 (8): 1922–1928. https://doi.org/10.1002/jnr.22002
27. Kim J.J., Park H.J., Jung Y.C. et al. Evaluative processing of ambivalent stimuli in patients with schizophrenia and depression: A [<sup>15</sup>O] H<sub>2</sub> O PET study. J. Int. Neuropsychol. Soc. 2009; 15 (6): 990–1001. https://doi.org/10.1017/S1355617709990403
28. Lahti A.C., Weiler M.A., Holcomb H.H., Tamminga C.A., Cropsey K.L. Modulation of limbic circuitry predicts treatment response to antipsychotic medication: A functional imaging study in schizophrenia. Neuropsychopharmacology. 2009; 34 (13): 2675–2690. https://doi.org/10.1038/npp.2009.94
29. Osuch E.A., Willis M.W., Bluhm R. et al. Neurophysiological Responses to Traumatic Reminders in the Acute Aftermath of Serious Motor Vehicle Collisions Using [<sup>15</sup>O]-H<sub>2</sub>O Positron Emission Tomography. Biol. Psychiatry. 2008; 64 (4): 327–335. https://doi.org/10.1016/j.biopsych.2008.03.010
30. Mamach M., Wilke F., Durisin M. et al. Feasibility of <sup>15</sup>O-water PET studies of auditory system activation during general anesthesia in children. EJNMMI Res. 2018; 8 (1): 11. https://doi.org/10.1186/s13550-018-0362-z
31. Lahesmaa M., Orava J., Schalin-Jäntti C. et al. Hyperthyroidism increases brown fat metabolism in humans. J. Clin. Endocrinol. Metab. 2014; 99 (1): 28–35. https://doi.org/10.1210/jc.2013-2312
32. Lahesmaa M., Oikonen V., Helin S. et al. Regulation of human brown adipose tissue by adenosine and A 2A receptors – studies with [<sup>15</sup>O]H<sub>2</sub>O and [<sup>11</sup>C]TMSX PET/CT. Eur. J. Nucl. Med. Mol. Imaging. 2019; 46 (3): 743–750. https://doi.org/10.1007/s00259-018-4120-2
33. Lindholm P., Sutinen E., Oikonen V. et al. PET imaging of blood flow and glucose metabolism in localized musculoskeletal tumors of the extremities. Nucl. Med. Biol. 2011; 38 (2): 295–300. https://doi.org/10.1016/j.nucmedbio.2010.08.012
34. Ng J.M., Bertoldo A., Minhas D.S. et al. Dynamic PET imaging reveals heterogeneity of skeletal muscle insulin resistance. J. Clin. Endocrinol. Metab. 2014; 99 (1): 102–106. https://doi.org/10.1210/jc.2013-2095
35. Temmerman O.P.P., Raijmakers P.G.H.M., Heyligers I.C. et al. Bone metabolism after total hip revision surgery with impacted grafting: Evaluation using H<sub>2</sub><sup>15</sup>O and [<sup>18</sup>F] fluoride PET; A pilot study. Mol. Imaging Biol. 2008; 10 (5): 288–293. https://doi.org/10.1007/s11307-008-0153-4
36. Koopman T., Yaqub M., Heijtel D.F.R. et al. Semiquantitative cerebral blood flow parameters derived from non-invasive [<sup>15</sup>O]H<sub>2</sub>O PET studies. J. Cereb. Blood. Flow. Metab. 2019; 39 (1): 163–172. https://doi.org/10.1177/0271678X17730654
37. Komar G., Oikonen V., Sipilä H., Seppänen M., Minn H. Noninvasive parametric blood flow imaging of head and neck tumours using [<sup>15</sup>O]H<sub>2</sub>O and PET/CT. Nucl. Med. Commun. 2012; 33 (11): 1169–1178. https://doi.org/10.1097/MNM.0b013e3283579e6e
38. Stuijfzand W.J., Driessen R.S., Raijmakers P.G. et al. Prevalence of ischaemia in patients with a chronic total occlusion and preserved left ventricular ejection fraction. Eur. Heart. J. Cardiovasc. Imaging. 2017; 18 (9): 1025–1033. https://doi.org/10.1093/ehjci/jew188
39. Danad I., Raijmakers P.G., Harms H.J. et al. Impact of anatomical and functional severity of coronary atherosclerotic plaques on the transmural perfusion gradient: A [<sup>15</sup>O]H<sub>2</sub>O PET study. Eur. Heart J. 2014; 35 (31): 2094–2105. https://doi.org/10.1093/eurheartj/ehu170
40. Zyromska A., Małkowski B., Wiśniewski T. et al. <sup>15</sup>O-H<sub>2</sub>O PET/CT as a tool for the quantitative assessment of early post-radiotherapy changes of heart perfusion in breast carcinoma patients. Br. J. Radiol. 2018; 91 (1088). https://doi.org/10.1259/bjr.20170653
41. Nielsen R., Jorsal A., Iversen P. et al. Heart failure patients with prediabetes and newly diagnosed diabetes display abnormalities in myocardial metabolism. J. Nucl. Cardiol. 2018; 25 (1): 169–176. https://doi.org/10.1007/s12350-016-0622-0
42. Bom M.J., Driessen R.S., Raijmakers P.G. et al. Diagnostic value of longitudinal flow gradient for the presence of haemodynamically significant coronary artery disease. Eur. Heart J. Cardiovasc. Imaging. 2019; 20 (1): 21–30. https://doi.org/10.1093/ehjci/jey129
43. Harms H.J., Knaapen P., Haan S. De, Lubberink M. Automatic generation of absolute myocardial blood flow images using [<sup>15</sup>O]H<sub>2</sub>O and a clinical PET/CT scanner. Eur. J. Nucl. Med. Mol. Imaging. 2011; 38 (5): 930–939. https://doi.org/10.1007/s00259-011-1730-3
44. Van Der Veldt A.A.M., Hendrikse N.H., Harms H.J. et al. Quantitative parametric perfusion images using <sup>15</sup>O-labeled water and a clinical PET/CT scanner: Test-retest variability in lung cancer. J. Nucl. Med. 2010; 51 (11): 1684–1690. https://doi.org/10.2967/jnumed.110.079137
45. De Langen A.J., Lubberink M., Boellaard R. et al. Reproducibility of tumor perfusion measurements using <sup>15</sup>O-labeled water and PET. J. Nucl. Med. 2008; 49 (11): 1763–1768. https://doi.org/10.2967/jnumed.108.053454
46. Lodge M.A., Carson R.E., Carrasquillo J.A. et al. Parametric images of blood flow in oncology PET studies using [<sup>15</sup>O] water. J. Nucl. Med. 2000; 41 (11): 1784–1792.
47. Apostolova I., Hofheinz F., Buchert R. et al. Combined measurement of tumor perfusion and glucose metabolism for improved tumor characterization in advanced cervical carcinoma: A PET/CT pilot study using [<sup>15</sup>O]water and [<sup>18</sup>F] fluorodeoxyglucose. Strahlenther Onkol. 2014; 190 (6): 575–581. https://doi.org/10.1007/s00066-014-0611-7
48. Scott A.M., Mitchell P.L., O’Keefe G. et al. Pharmacodynamic analysis of tumour perfusion assessed by <sup>15</sup>O-water-PET imaging during treatment with sunitinib malate in patients with advanced malignancies. EJNMMI Res. 2012; 2 (1): 1–10. https://doi.org/10.1186/2191-219X-2-31
49. Abiko K., Shiga T., Katoh C. et al. Relationship between intelligence quotient (IQ) and cerebral metabolic rate of oxygen in patients with neurobehavioural disability after traumatic brain injury. Brain Inj. 2018; 32 (11): 1367–1372. https://doi.org/10.1080/02699052.2018.1496478
50. Aoe J., Watabe T., Shimosegawa E. et al. Evaluation of the default-mode network by quantitative <sup>15</sup>O-PET: comparative study between cerebral blood flow and oxygen consumption. Ann. Nucl. Med. 2018; 32 (7): 485–491. https://doi.org/10.1007/s12149-018-1272-x
51. Miyoshi K., Chida K., Kobayashi M. et al. Two-Year Clinical, Cerebral Hemodynamic, and Cognitive Outcomes of Adult Patients Undergoing Medication Alone for Symptomatically Ischemic Moyamoya Disease Without Cerebral Misery Perfusion: A Prospective Cohort Study. Clin. Neurosurg. 2019; 84 (6): 1233–1241. https://doi.org/10.1093/neuros/nyy234
52. Frackowiak R.S.J., Lenzi G.L., Jones T., Heather J.D. Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using <sup>15</sup>O and positron emission tomography: Theory, procedure, and normal values. J. Comput. Assist. Tomogr. 1980; 4 (6): 727–736. https://doi.org/10.1097/00004728-198012000-00001
53. Thomassen A., Braad P.E., Pedersen K.T. et al. 15-O-water myocardial flow reserve PET and CT angiography by full hybrid PET/CT as a potential alternative to invasive angiography. Int. J. Cardiovasc. Imaging. 2018; 34 (12): 2011–2022. https://doi.org/10.1007/s10554-018-1420-3
54. Tolbod L.P., Nielsen M.M., Pedersen B.G. et al. Non-invasive quantification of tumor blood flow in prostate cancer using <sup>15</sup>O-H<sub>2</sub>O PET/CT. Am. J. Nucl. Med. Mol. Imaging. 2018; 8 (5): 292–302. PMID: 30510847
55. Шульц Е.И., Пронин И.Н., Баталов А.И., Соложенцева К.Д., Павлова Г.В., Дрозд С.Ф., Беляев А.Ю., Маряшев С.А., Пицхелаури Д.И. Исследование гемодинамики злокачественных глиом методом КТ-перфузии. Медицинская визуализация. 2020; 24 (2): 105–118. https://doi.org/10.24835/1607-0763-2020-2-105-118 Shults E.I., Pronin I.N., Batalov A.I., Solozhentseva K.D., Pavlova G.V., Drozd S.F., Belyaev A.Yu., Maryashev S.A., Pitskhelauri D.I. CT-perfusion in assessment of the malignant gliomas hemodynamics. Medical Visualization. 2020; 24 (2): 105–118. https://doi.org/10.24835/1607-0763-2020-2-105-118. (In Russian)
56. Batalov A.I., Zakharova N.E., Pronin I.N. et al. 3D pCASL-perfusion in preoperative assessment of brain gliomas in large cohort of patients. Sci. Rep. 2022; 12 (1): 2121. https://doi.org/10.1038/s41598-022-05992-4
57. Grüner J.M., Paamand R., Kosteljanetz M., Broholm H. Brain perfusion CT compared with <sup>15</sup>O-H<sub>2</sub>O PET in patients with primary brain tumours. Eur. J. Nucl. Med. Mol. Imaging. 2012; 39: 1691–1701. https://doi.org/10.1007/s00259-012-2173-1
Review
For citations:
Postnov A.A., Kalaeva D.B., Balakhonov A.B., Pronin I.N. Non-invasive measurement of oxygen metabolism. Part 1: Historical review and state of the art. Medical Visualization. 2023;27(4):138-149. (In Russ.) https://doi.org/10.24835/1607-0763-1297