Неинвазивное измерение метаболизма кислорода. Часть 1: исторический обзор и современное состояние
https://doi.org/10.24835/1607-0763-1297
Аннотация
Метаболизм кислорода является ключевым фактором жизни живого организма. Статья является первой частью обзора методов измерения метаболизма кислорода.
Цель исследования: дать представление об истории развития методов измерения метаболизма кислорода, перехода от глобального измерения перфузии головного мозга к локальному, описать роль изотопа 15O как основы “золотого стандарта” измерения метаболизма кислорода с помощью позитронно-эмиссионной томографии (ПЭТ), а также привести примеры использования методики.
Материал и методы. Проанализировано более 200 работ из базы научных публикаций Pubmed по ключевым словам “positron emission tomography + O-15”, также изучались релевантные ссылки в данных публикациях, не содержащих указанных ключевых слов либо содержащих их в иной формулировке. Приведен пример измерения перфузии опухоли головного мозга методом КТ-перфузии, МР-ASL и ПЭТ с H215O из собственной практики.
Результаты. Для иллюстрации эволюции методов измерения перфузии и метаболизма кислорода процитированы 57 работ, описывающих ключевые достижения в технологиях измерения. Приведены примеры использования ПЭТ с H215O в фундаментальных исследованиях и клинической практике.
Заключение. Очевидная ценность данных, полученных ПЭТ с изотопом кислорода, сочетается с инвазивностью (в некоторых случаях), технической сложностью и высокой стоимостью процедуры. Вторая часть обзора будет посвящена альтернативным методам измерения метаболизма кислорода, которые развиваются в XXI веке и которые предназначены для широкого клинического применения.
Об авторах
А. А. ПостновРоссия
Постнов Андрей Александрович – канд. физ.-мат. наук, научный сотрудник отделения рентгеновских и радиоизотопных методов диагностики; доцент; руководитель проекта; научный сотрудник
125047 Москва, 4-я Тверская-Ямская ул., д.16;
115409 Москва, Каширское шоссе, 31;
115230 Москва, Варшавское шоссе, д. 46;
119991 Москва, Ленинский проспект, д. 53
Д. Б. Калаева
Россия
Калаева Диана Борисовна – медицинский физик отделения рентгеновских и радиоизотопных методов диагностики; аспирант
125047 Москва, 4-я Тверская-Ямская ул., д.16;
115409 Москва, Каширское шоссе, 31
А. Б. Балахонов
Россия
Балахонов Антон Борисович – ведущий инженер отделения рентгеновских и радиоизотопных методов диагностики
125047 Москва, 4-я Тверская-Ямская ул., д.16
И. Н. Пронин
Россия
Пронин Игорь Николаевич – академик РАН, доктор мед. наук, профессор, заведующий отделением рентгеновских и радиоизотопных методов диагностики
125047 Москва, 4-я Тверская-Ямская ул., д.16
Список литературы
1. Kety S.S., Schmidt C.F. The Nitrous Oxide Method for The Quantitative Determination of Cerebral Blood Flow in Man: Theory, Procedure and Normal Values. J. Clin. Invest. 1948; 27 (4): 476–483. https://doi.org/10.1172/JCI101994
2. Lassen N.A., Munck O. The Cerebral Blood Flow in Man Determined by the Use of Radioactive Krypton. Acta. Physiol. Scand. 1954; 33 (1): 30–49. https://doi.org/10.1111/j.1748-1716.1955.tb01191.x
3. Olsen T.S., Lassen N.A. Blood Flow and Vascular Reactivity During Attacks of Classic Migraine’Limitations of the Xe-133 Intraarterial Technique. Headache J. Head. Face Pain. 1989; 29 (1): 15–20. https://doi.org/10.1111/j.1526-4610.1989.hed2901015.x
4. Ter-Pogossian M.M., Eichling J.O., Davis D.O., Welch M.J. The measure in vivo of regional cerebral oxygen utilization by means of oxyhemoglobin labeled with radioactive oxygen-15. J. Clin. Invest. 1970; 49 (2): 381–391. https://doi.org/10.1172/JCI106247
5. Huang S.C., Carson R.E., Phelps M.E. Measurement of local blood flow and distribution volume with short-lived isotopes: A general input technique. J. Cereb. Blood. Flow. Metab. 1982; 2 (1): 99–108. https://doi.org/10.1038/jcbfm.1982.11
6. Huang S.C., Carson R.E., Hoffman E.J., et al. Quantitative measurement of local cerebral blood flow in humans by positron computed tomography and <sup>15</sup>O-water. J. Cereb. Blood. Flow. Metab. 1983; 3 (2): 141–153. https://doi.org/10.1038/jcbfm.1983.21
7. Lassen N.A. Cerebral Blood Flow and Oxygen Consumption in Man. Physiol. Rev. 1959; 39 (2): 183–238.
8. Harper A.M., Glass H.I., Steven J.L., Granat A.H. The Measurement of Local Blood Flow in the Cerebral Cortex From the Clearance of Xenon-133. J. Neurol. Neurosurg. Psychiatry. 1964; 27: 255–258. https://doi.org/10.1136/jnnp.27.3.255
9. Dollery C.T., West J.B. Regional uptake of radioactive oxygen, carbon monoxide and carbon dioxide in the lungs of patients with mitral stenosis. Circ. Res. 1960; 8: 765–771. https://doi.org/10.1161/01.RES.8.4.765
10. Jones T., Chesler D.A., Ter Pogossian M.M. The continuous inhalation of Oxygen 15 for assessing regional oxygen extraction in the brain of man. Br. J. Radiol. 1976; 49 (580): 339–343. https://doi.org/10.1259/0007-1285-49-580-339
11. Lammertsma A.A., Wise R.J.S., Heather J.D. Correction for the presence of intravascular oxygen-15 in the steady-state technique for measuring regional oxygen extraction ratio in the brain. II. Results in normal subjects and brain tumour and stroke patients. J. Cereb. Blood Flow. Metab. 1983; 3 (4): 425–431. https://doi.org/10.1038/jcbfm.1983.68
12. Lassen N.A., Copenhagen M.D. The luxury-perfusion syndrome and its possible relation to acute metabolic acidosis localised within the brain. Lancet. 1966; 2 (7473): 1113–1115. https://doi.org/10.1016/s0140-6736(66)92199-4
13. Ackerman R.H., Correia J.A., Alpert N.M. et al. Positron Imaging in Ischemic Stroke Disease Using Compounds Labeled With Oxygen 15. Arch. Neurol. 1981; 38 (9): 537. https://doi.org/10.1001/archneur.1981.00510090031002
14. Hakim A.M., Pokrupa R.P., Villanueva J. et al. The Effect of Spontaneous Reperfusion on Metabolic Function in Early Human Cerebral Infarcts. Ann. Neurol. 1987; 21 (3): 279–289. https://doi.org/10.1002/ana.410210310
15. Baron J.C., Bousser M.G., Comar D., Kellershonh C. Human Hemispheric Infarction Studied by Positron Emission Tomography and the 15-O Continous Inhalation Technique. Comput. Tomogr. Published online 1980: 231–237.
16. Baron J.C., Bousser M.G., Rey A., Guillard A., Comar D., Castaigne P. Reversal of focal “misery-perfusion syndrome” by extra-intracranial arterial bypass in hemodynamic cerebral ischemia a case study with <sup>18</sup>O positron emission tomography. Stroke. 1981; 12 (4): 454–459. https://doi.org/10.1161/01.STR.12.4.454
17. Van Oudenhove L., Vandenberghe J., Dupont P. et al. Abnormal regional brain activity during rest and (anticipated) gastric distension in functional dyspepsia and the role of anxiety: A H<sub>2</sub><sup>15</sup>O-PET study. Am. J. Gastroenterol. 2010; 105 (4): 913–924. https://doi.org/10.1038/ajg.2010.39
18. Geeraerts B., Van Oudenhove L., Dupont P., et al. Different regional brain activity during physiological gastric distension compared to balloon distension: A H<sub>2</sub><sup>15</sup>O-PET study. Neurogastroenterol. Motil. 2011; 23 (6): 533–544. https://doi.org/10.1111/j.1365-2982.2010.01642.x
19. Van Oudenhove L., Vandenberghe J., Dupont P. et al. Cortical deactivations during gastric fundus distension in health: Visceral pain-specific response or attenuation of “default mode” brain function? A H<sub>2</sub><sup>15</sup>O-PET study. Neurogastroenterol. Motil. 2009; 21 (3): 259–271. https://doi.org/10.1111/j.1365-2982.2008.01196.x
20. Hamdy S., Rothwell J.C., Brooks D.J. et al. Identification of the cerebral loci processing human swallowing with H<sub>2</sub><sup>15</sup>O PET activation. J. Neurophysiol. 1999; 81 (4): 1917–1926. https://doi.org/10.1152/jn.1999.81.4.1917
21. Prevett M.C., Duncan J.S., Jones T. et al. Demonstration of thalarnic activation during typical absence seizures using H<sub>2</sub><sup>15</sup>O and pet. Neurology. 1995; 45 (7): 1396–1402. https://doi.org/10.1212/WNL.45.7.1396
22. Bolding M.S., White D.M., Hadley J.A. et al. Antipsychotic drugs alter functional connectivity between the medial frontal cortex, hippocampus, and nucleus accumbens as measured by H<sub>2</sub><sup>15</sup>O PET. Front Psychiatry. 2012; 3 (DEC). https://doi.org/10.3389/fpsyt.2012.00105
23. Friston K.J., Holmes A.P., Worsley K.J. et al. Statistical Parametric Maps in Functional Imaging: A General Linear Approach. Hum. Brain Mapp. 1995; 2 (4): 189–210. https://doi.org/10.1002/hbm.460020402
24. Braun A.R., Balkin T.J., Wesensten N.J. et al. Regional cerebral blood flow throughout the sleep-wake cycle. An H<sub>2</sub><sup>15</sup>O PET study. Brain. 1997; 120 (7): 1173–1197. https://doi.org/10.1093/brain/120.7.1173
25. Narayana S., Hichwa R.D., Ponto L.L.B. et al. Dosimetry of [<sup>15</sup>O] water: A physiologic approach. Med. Phys. 1996; 23: 159. https://doi.org/10.1118/1.597793
26. Bie-Olsen L.G., Kjaer T.W., Pedersen-Bjergaard U. et al. Changes of cognition and regional cerebral activity during acute hypoglycemia in normal subjects: A H<sub>2</sub><sup>15</sup>O positron emission tomographic study. J. Neurosci. Res. 2009; 87 (8): 1922–1928. https://doi.org/10.1002/jnr.22002
27. Kim J.J., Park H.J., Jung Y.C. et al. Evaluative processing of ambivalent stimuli in patients with schizophrenia and depression: A [<sup>15</sup>O] H<sub>2</sub> O PET study. J. Int. Neuropsychol. Soc. 2009; 15 (6): 990–1001. https://doi.org/10.1017/S1355617709990403
28. Lahti A.C., Weiler M.A., Holcomb H.H., Tamminga C.A., Cropsey K.L. Modulation of limbic circuitry predicts treatment response to antipsychotic medication: A functional imaging study in schizophrenia. Neuropsychopharmacology. 2009; 34 (13): 2675–2690. https://doi.org/10.1038/npp.2009.94
29. Osuch E.A., Willis M.W., Bluhm R. et al. Neurophysiological Responses to Traumatic Reminders in the Acute Aftermath of Serious Motor Vehicle Collisions Using [<sup>15</sup>O]-H<sub>2</sub>O Positron Emission Tomography. Biol. Psychiatry. 2008; 64 (4): 327–335. https://doi.org/10.1016/j.biopsych.2008.03.010
30. Mamach M., Wilke F., Durisin M. et al. Feasibility of <sup>15</sup>O-water PET studies of auditory system activation during general anesthesia in children. EJNMMI Res. 2018; 8 (1): 11. https://doi.org/10.1186/s13550-018-0362-z
31. Lahesmaa M., Orava J., Schalin-Jäntti C. et al. Hyperthyroidism increases brown fat metabolism in humans. J. Clin. Endocrinol. Metab. 2014; 99 (1): 28–35. https://doi.org/10.1210/jc.2013-2312
32. Lahesmaa M., Oikonen V., Helin S. et al. Regulation of human brown adipose tissue by adenosine and A 2A receptors – studies with [<sup>15</sup>O]H<sub>2</sub>O and [<sup>11</sup>C]TMSX PET/CT. Eur. J. Nucl. Med. Mol. Imaging. 2019; 46 (3): 743–750. https://doi.org/10.1007/s00259-018-4120-2
33. Lindholm P., Sutinen E., Oikonen V. et al. PET imaging of blood flow and glucose metabolism in localized musculoskeletal tumors of the extremities. Nucl. Med. Biol. 2011; 38 (2): 295–300. https://doi.org/10.1016/j.nucmedbio.2010.08.012
34. Ng J.M., Bertoldo A., Minhas D.S. et al. Dynamic PET imaging reveals heterogeneity of skeletal muscle insulin resistance. J. Clin. Endocrinol. Metab. 2014; 99 (1): 102–106. https://doi.org/10.1210/jc.2013-2095
35. Temmerman O.P.P., Raijmakers P.G.H.M., Heyligers I.C. et al. Bone metabolism after total hip revision surgery with impacted grafting: Evaluation using H<sub>2</sub><sup>15</sup>O and [<sup>18</sup>F] fluoride PET; A pilot study. Mol. Imaging Biol. 2008; 10 (5): 288–293. https://doi.org/10.1007/s11307-008-0153-4
36. Koopman T., Yaqub M., Heijtel D.F.R. et al. Semiquantitative cerebral blood flow parameters derived from non-invasive [<sup>15</sup>O]H<sub>2</sub>O PET studies. J. Cereb. Blood. Flow. Metab. 2019; 39 (1): 163–172. https://doi.org/10.1177/0271678X17730654
37. Komar G., Oikonen V., Sipilä H., Seppänen M., Minn H. Noninvasive parametric blood flow imaging of head and neck tumours using [<sup>15</sup>O]H<sub>2</sub>O and PET/CT. Nucl. Med. Commun. 2012; 33 (11): 1169–1178. https://doi.org/10.1097/MNM.0b013e3283579e6e
38. Stuijfzand W.J., Driessen R.S., Raijmakers P.G. et al. Prevalence of ischaemia in patients with a chronic total occlusion and preserved left ventricular ejection fraction. Eur. Heart. J. Cardiovasc. Imaging. 2017; 18 (9): 1025–1033. https://doi.org/10.1093/ehjci/jew188
39. Danad I., Raijmakers P.G., Harms H.J. et al. Impact of anatomical and functional severity of coronary atherosclerotic plaques on the transmural perfusion gradient: A [<sup>15</sup>O]H<sub>2</sub>O PET study. Eur. Heart J. 2014; 35 (31): 2094–2105. https://doi.org/10.1093/eurheartj/ehu170
40. Zyromska A., Małkowski B., Wiśniewski T. et al. <sup>15</sup>O-H<sub>2</sub>O PET/CT as a tool for the quantitative assessment of early post-radiotherapy changes of heart perfusion in breast carcinoma patients. Br. J. Radiol. 2018; 91 (1088). https://doi.org/10.1259/bjr.20170653
41. Nielsen R., Jorsal A., Iversen P. et al. Heart failure patients with prediabetes and newly diagnosed diabetes display abnormalities in myocardial metabolism. J. Nucl. Cardiol. 2018; 25 (1): 169–176. https://doi.org/10.1007/s12350-016-0622-0
42. Bom M.J., Driessen R.S., Raijmakers P.G. et al. Diagnostic value of longitudinal flow gradient for the presence of haemodynamically significant coronary artery disease. Eur. Heart J. Cardiovasc. Imaging. 2019; 20 (1): 21–30. https://doi.org/10.1093/ehjci/jey129
43. Harms H.J., Knaapen P., Haan S. De, Lubberink M. Automatic generation of absolute myocardial blood flow images using [<sup>15</sup>O]H<sub>2</sub>O and a clinical PET/CT scanner. Eur. J. Nucl. Med. Mol. Imaging. 2011; 38 (5): 930–939. https://doi.org/10.1007/s00259-011-1730-3
44. Van Der Veldt A.A.M., Hendrikse N.H., Harms H.J. et al. Quantitative parametric perfusion images using <sup>15</sup>O-labeled water and a clinical PET/CT scanner: Test-retest variability in lung cancer. J. Nucl. Med. 2010; 51 (11): 1684–1690. https://doi.org/10.2967/jnumed.110.079137
45. De Langen A.J., Lubberink M., Boellaard R. et al. Reproducibility of tumor perfusion measurements using <sup>15</sup>O-labeled water and PET. J. Nucl. Med. 2008; 49 (11): 1763–1768. https://doi.org/10.2967/jnumed.108.053454
46. Lodge M.A., Carson R.E., Carrasquillo J.A. et al. Parametric images of blood flow in oncology PET studies using [<sup>15</sup>O] water. J. Nucl. Med. 2000; 41 (11): 1784–1792.
47. Apostolova I., Hofheinz F., Buchert R. et al. Combined measurement of tumor perfusion and glucose metabolism for improved tumor characterization in advanced cervical carcinoma: A PET/CT pilot study using [<sup>15</sup>O]water and [<sup>18</sup>F] fluorodeoxyglucose. Strahlenther Onkol. 2014; 190 (6): 575–581. https://doi.org/10.1007/s00066-014-0611-7
48. Scott A.M., Mitchell P.L., O’Keefe G. et al. Pharmacodynamic analysis of tumour perfusion assessed by <sup>15</sup>O-water-PET imaging during treatment with sunitinib malate in patients with advanced malignancies. EJNMMI Res. 2012; 2 (1): 1–10. https://doi.org/10.1186/2191-219X-2-31
49. Abiko K., Shiga T., Katoh C. et al. Relationship between intelligence quotient (IQ) and cerebral metabolic rate of oxygen in patients with neurobehavioural disability after traumatic brain injury. Brain Inj. 2018; 32 (11): 1367–1372. https://doi.org/10.1080/02699052.2018.1496478
50. Aoe J., Watabe T., Shimosegawa E. et al. Evaluation of the default-mode network by quantitative <sup>15</sup>O-PET: comparative study between cerebral blood flow and oxygen consumption. Ann. Nucl. Med. 2018; 32 (7): 485–491. https://doi.org/10.1007/s12149-018-1272-x
51. Miyoshi K., Chida K., Kobayashi M. et al. Two-Year Clinical, Cerebral Hemodynamic, and Cognitive Outcomes of Adult Patients Undergoing Medication Alone for Symptomatically Ischemic Moyamoya Disease Without Cerebral Misery Perfusion: A Prospective Cohort Study. Clin. Neurosurg. 2019; 84 (6): 1233–1241. https://doi.org/10.1093/neuros/nyy234
52. Frackowiak R.S.J., Lenzi G.L., Jones T., Heather J.D. Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using <sup>15</sup>O and positron emission tomography: Theory, procedure, and normal values. J. Comput. Assist. Tomogr. 1980; 4 (6): 727–736. https://doi.org/10.1097/00004728-198012000-00001
53. Thomassen A., Braad P.E., Pedersen K.T. et al. 15-O-water myocardial flow reserve PET and CT angiography by full hybrid PET/CT as a potential alternative to invasive angiography. Int. J. Cardiovasc. Imaging. 2018; 34 (12): 2011–2022. https://doi.org/10.1007/s10554-018-1420-3
54. Tolbod L.P., Nielsen M.M., Pedersen B.G. et al. Non-invasive quantification of tumor blood flow in prostate cancer using <sup>15</sup>O-H<sub>2</sub>O PET/CT. Am. J. Nucl. Med. Mol. Imaging. 2018; 8 (5): 292–302. PMID: 30510847
55. Шульц Е.И., Пронин И.Н., Баталов А.И., Соложенцева К.Д., Павлова Г.В., Дрозд С.Ф., Беляев А.Ю., Маряшев С.А., Пицхелаури Д.И. Исследование гемодинамики злокачественных глиом методом КТ-перфузии. Медицинская визуализация. 2020; 24 (2): 105–118. https://doi.org/10.24835/1607-0763-2020-2-105-118 Shults E.I., Pronin I.N., Batalov A.I., Solozhentseva K.D., Pavlova G.V., Drozd S.F., Belyaev A.Yu., Maryashev S.A., Pitskhelauri D.I. CT-perfusion in assessment of the malignant gliomas hemodynamics. Medical Visualization. 2020; 24 (2): 105–118. https://doi.org/10.24835/1607-0763-2020-2-105-118. (In Russian)
56. Batalov A.I., Zakharova N.E., Pronin I.N. et al. 3D pCASL-perfusion in preoperative assessment of brain gliomas in large cohort of patients. Sci. Rep. 2022; 12 (1): 2121. https://doi.org/10.1038/s41598-022-05992-4
57. Grüner J.M., Paamand R., Kosteljanetz M., Broholm H. Brain perfusion CT compared with <sup>15</sup>O-H<sub>2</sub>O PET in patients with primary brain tumours. Eur. J. Nucl. Med. Mol. Imaging. 2012; 39: 1691–1701. https://doi.org/10.1007/s00259-012-2173-1
Рецензия
Для цитирования:
Постнов А.А., Калаева Д.Б., Балахонов А.Б., Пронин И.Н. Неинвазивное измерение метаболизма кислорода. Часть 1: исторический обзор и современное состояние. Медицинская визуализация. 2023;27(4):138-149. https://doi.org/10.24835/1607-0763-1297
For citation:
Postnov A.A., Kalaeva D.B., Balakhonov A.B., Pronin I.N. Non-invasive measurement of oxygen metabolism. Part 1: Historical review and state of the art. Medical Visualization. 2023;27(4):138-149. (In Russ.) https://doi.org/10.24835/1607-0763-1297