Использование трансферного обучения для автоматизированного поиска дефектов на рентгенограммах органов грудной клетки
https://doi.org/10.24835/1607-0763-1243
Аннотация
Цель исследования: разработать и протестировать алгоритмы определения проекции и поиска распространенных технических дефектов на рентгенограммах органов грудной клетки (ОГК) при помощи трансферного обучения, используя различные нейросетевые архитектуры.
Материал и методы. Определялись такие несоответствия методики сканирования на рентгенограммах как некорректный выбор границ исследования, нарушение укладки и позиционирования пациентов. В качестве основы для создания алгоритмов было выбрано трансферное обучение нейросетевых архитектур VGG19 и ResNet152V2. Для обучения и тестирования алгоритмов были использованы рентгенограммы из баз данных с открытым доступом (общий объем более 230 тыс. исследований). Для валидации полученных алгоритмов был подготовлен тестовый набор данных из 150 анонимизированных рентгенограмм ОГК, полученных из Единого радиологического информационного сервиса города Москвы (ЕРИС) и оцененных врачами-экспертами и лаборантами-экспертами.
Результаты. Все полученные алгоритмы имеют высокие показатели качества классификации. Максимальная точность на тестовом наборе данных была получена для модели, определяющей проекцию, AUC составил 1,0, минимальная точность: AUC 0,968 была получена для модели, определяющей ротацию грудной клетки на боковой проекции. На валидационном наборе данных максимальная точность была получена для модели, определяющей проекцию, AUC составил 0,996, минимальная точность: AUC 0,898 была получена для модели, определяющей ротацию грудной клетки на боковой проекции.
Заключение. По значениям метрик диагностической точности для каждой из задач разработанные алгоритмы превысили пороговое значение в 0,81 и могут быть рекомендованы к практическому применению.
Ключевые слова
Об авторах
А. А. БорисовРоссия
Борисов Александр Александрович – разработчик программного обеспечения; младший научный сотрудник
117997 Москва, ул. Островитянова, дом 1;
127051 Москва, ул. Петровка, д. 24, стр. 1
С. С. Семенов
Россия
Семенов Серафим Сергеевич – младший научный сотрудник сектора разработки систем внедрения медицинских интеллектуальных технологий
127051 Москва, ул. Петровка, д. 24, стр. 1
К. М. Арзамасов
Россия
Арзамасов Кирилл Михайлович – канд. мед. наук, руководитель отдела медицинской информатики, радиомики и радиогеномики
127051 Москва, ул. Петровка, д. 24, стр. 1
Список литературы
1. Kim T.K., Yi P.H., Wei J. et al. Deep learning method for automated classification of anteroposterior and postero-anterior chest radiographs. J. Digit. Imaging. 2019; 32 (6): 925–930. https://doi.org/10.1007/s10278-019-00208-0
2. Shet N., Chen J., Siegel E. Continuing challenges in defining image quality. Pediatr. Radiol. 2011; 41 (5): 582–589. https://doi.org/10.1007/s00247-011-2028-0
3. McDonald R.J., Schwartz K.M., Eckel L.J. et al. The effects of changes in utilization and technological advancements of cross-sectional imaging on radiologist workload. Acad. Radiol. 2015; 22 (9): 1191–1198. https://doi.org/10.1016/j.acra.2015.05.007
4. Willis C.E., Nishino T.K., Wells J.R. et al. Automated quality control assessment of clinical chest images. Med. Phys. 2018; 45 (10): 4377–4391. https://doi.org/10.1002/mp.13107
5. Rale A.P., Gharpure D.C., Ravindran V.R. et al. Comparison of different ANN techniques for automatic defect detection in X-Ray images. 2009 International Conference on Emerging Trends in Electronic and Photonic Devices & Systems. 2009; 193–197. https://doi.org/10.1109/ELECTRO.2009.5441138
6. Морозов С.П., Кузьмина Е.С., Ледихова Н.В., Владзимирский А.В., Трофименко И.А., Мокиенко О.А., Панина Е.В., Андрейченко А.Е., Омелянская О.В., Гомболевский В.А., Полищук Н.С., Шулькин И.М., Решетников Р.В. Мобилизация научно-практического потенциала службы лучевой диагностики г. Москвы в пандемию COVID-19. Digital Diagn. 2020. 1 (1): 5–12. https://doi.org/10.17816/DD51043
7. Приказ Министерства здравоохранения РФ от 30 ноября 2017 г. № 965н “Об утверждении порядка организации и оказания медицинской помощи с применением телемедицинских технологий” // base.garant.ru [Электронный ресурс]. URL: https://base.garant.ru/71851294/
8. Приказ Департамента здравоохранения города Москвы от 01.04.2020 №323 “О создании дистанционного референс-центра по лучевой диагностике”. tele-med.ai [Электронный ресурс]. URL: https://tele-med.ai/biblioteka-dokumentov/dzm-prikaz-01042020-323-distanc-referens-centr-ld
9. Приказ Департамента здравоохранения города Москвы от 15.03.2018 № 183 “Об утверждении регламента организации оказания медицинской помощи по профилям “рентгенология” и “радиология” с применением телемедицинских технологий”. consultant.ru [Электронный ресурс]. URL: http://www.consultant.ru/cons/cgi/online.cgi?req=doc&base=MLAW&n=184819#vjWHo7T82RuFXi2g1
10. Приказ Департамента здравоохранения города Москвы от 31.12.2019 №1160 “Об утверждении Регламента регистрации данных в Едином радиологическом информационном сервисе автоматизированной информационной системы города Москвы «Единая медицинская информационно-аналитическая система города Москвы»”. mos.ru [Электронный ресурс]. URL: https://www.mos.ru/dzdrav/documents/department-acts/view/233696220/
11. Morozov S.P., Ledikhova N.V., Panina E.V. et al. Performance quality of X-ray technicians when they interact remotely with the reference center for diagnostic radiology using telemedicine technologies. Natsional'noe Zdravookhranenie. 2021; 2 (2): 36–46.
12. Rajkomar A., Lingam S., Taylor A.G. et al. High-Throughput Classification of Radiographs Using Deep Convolutional Neural Networks. J. Digit. Imaging. 2017; 30 (1): 95–101. https://doi.org/10.1007/s10278-016-9914-9
13. CheXpert Dataset //URL: https://stanfordmlgroup.github.io/competitions/chexpert/ (дата обращения 23.03.2022)
14. Chest X-rays dataset. URL: https://www.kaggle.com/datasets/raddar/chest-xrays-indiana-university (дата обращения 26.03.2022)
15. Chest X-Ray Images (Pneumonia). URL: https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia (дата обращения 20.12.2021)
16. NIH ChestX-ray14. URL: https://nihcc.app.box.com/v/ChestXray-NIHCC (дата обращения 20.12.2021)
17. Приказ Департамента здравоохранения города Москвы от 25.12.2017 № 918 о регламенте регистрации данных в системе “Единый радиологический информационный сервис” в медицинских организациях государственной системы здравоохранения города Москвы”. consultant.ru [Электронный ресурс]. URL: http://www.consultant.ru/cons/cgi/online.cgi?req=doc&base=MLAW&n=183590#zudlo7TsbVSwYBM12
18. Simonyan K., Zisserman A. Very deep convolutional networks for large-scale image recognition. 3rd Int. Conf. Learn. Represent. ICLR 2015. Conf. Track Proc. 2015: 1–14. https://doi.org/10.48550/arXiv.1409.1556
19. ROC-инструмент ГБУЗ НПКЦ ДиТ ДЗМ // URL: https://roc-analysis.mosmed.ai/ ROC analysis tool of Scientific and Practical Clinical Center for Diagnostics and Telemedicine Technologies of the Moscow City Health Department // URL: https://roc-analysis.mosmed.ai/
20. Chan H.P., Samala R.K., Hadjiiski L.M., Zhou C. Deep Learning in Medical Image Analysis. Adv. Exp. Med. Biol. 2020; 1213: 3–21. https://doi.org/10.1007/978-3-030-33128-3_1
21. Litjens G., Kooi T., Bejnordi B.E. et al. A survey on deep learning in medical image analysis. Med. Image Anal. 2017; 42: 60–88. https://doi.org/10.1016/j.media.2017.07.005
22. Sahiner B., Pezeshk A., Hadjiiski L.M. et al. Deep learning in medical imaging and radiation therapy. Med. Phys. 2019; 46 (1): 1–36. https://doi.org/10.1002/mp.13264
23. Mazurowski M.A., Buda M., Saha A., Bashir M.R. Deep learning in radiology: An overview of the concepts and a survey of the state of the art with focus on MRI. J. Magn. Reson. Imaging. 2019; 49 (4) : 939–954. https://doi.org/10.1002/jmri.26534
24. Rahaman M.M., Li C., Yao Y. et al. Identification of COVID-19 samples from chest X-Ray images using deep learning: A comparison of transfer learning approaches. J. Xray Sci. Technol. 2020; 28 (5): 821–839. https://doi.org/10.3233%2FXST-200715
25. Arias-Garzón D., Alzate-Grisales J.A., Orozco-Arias S. et al. COVID-19 detection in X-ray images using convolutional neural networks. Mach. Learn Appl. 2021; 6: 100–138. https://doi.org/10.1016/j.mlwa.2021.100138
26. Morozov S.P., Vladzymyrskyy A.V., Klyashtornyy V.G. et al. Clinical acceptance of software based on artificial intelligence technologies (radiology). arXiv preprint arXiv:1908.00381. 2019. https://doi.org/10.48550/arXiv.1908.00381
Рецензия
Для цитирования:
Борисов А.А., Семенов С.С., Арзамасов К.М. Использование трансферного обучения для автоматизированного поиска дефектов на рентгенограммах органов грудной клетки. Медицинская визуализация. 2023;27(1):158-169. https://doi.org/10.24835/1607-0763-1243
For citation:
Borisov A.A., Semenov S.S., Arzamasov K.M. Transfer Learning for automated search for defects on chest X-rays. Medical Visualization. 2023;27(1):158-169. (In Russ.) https://doi.org/10.24835/1607-0763-1243