Preview

Medical Visualization

Advanced search

Doppler twinkling artifact: physical mechanisms and place in diagnostic practice. State of the art

https://doi.org/10.24835/1607-0763-1206

Abstract

The twinkling artifact has been known to specialists in ultrasound diagnostics since 1996. However, until now there is no understanding of the reasons for its appearance, and the place of its application in diagnostics.

Material and methods. Electronic databases (PubMed, E-library, Web of Science) were searched studies using the keyword – “twinkling artifact”. The scientific publications on the Doppler twinkling artifact from the moment of the first reports about its existence is systematized and analyzed. The authors' own developments on this topic are presented. Modern views on this phenomenon and its place in ultrasound diagnostics are described. An explanation of the physical mechanisms of this phenomenon is given.

Results. Recommendations are formulated for practitioners on changing the settings of an ultrasound scanner in order to increase twinkling artifact detectability. The directions of using the artifact to obtain additional diagnostic signs of pathological changes, which currently include the diagnosis of nephro-, uretero- and choledocholithiasis, are determined.

Conclusions. The high efficiency of the use of the twinkling artifact for the diagnosis of small kidney stones, comparable with the capabilities of computed tomography, has been shown.  

About the Authors

A. I. Gromov
N. Lopatkin Scientific Research Institute of Urology and Interventional Radiology – branch of the National Medical Research Radiologiсal Center of the Ministry of Health of Russian Federation; A.I. Evdokimov Moscow State University of Medicine and Dentistry of the Ministry of Healthcare of the Russian Federation
Russian Federation

Alexander I. Gromov – Doct. of Sci. (Med.), Associate Professor; head of the radiation diagnosis and treatment methods, Oncourology Department

51-1, 3rd Parkovaya str., Moscow 105425;
20/1, Delegatskaya str., Moscow 127473



O. A. Sapozhnikov
Lomonosov Moscow State University; Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington
Russian Federation

Oleg A. Sapozhnikov – Doct. of Sci. (Phys.-Math.), Professor at Physics Faculty of M.V. Lomonosov Moscow State University

Leninskie Gory, Moscow 119991, Russian Federation
Seattle, WA, 98105 USA



A. D. Kaprin
National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation; P. Hertsen Moscow oncology research institute – Branch of National Medical Research Radiological Centre of the Ministry of Healthcare of the Russian Federation; The Peoples' Friendship University of Russia
Russian Federation

Andrei D. Kaprin – Doct. of Sci. (Med.), Academician of RAS, Professor, general director of the National Medical Research Centre of Radiology of Ministry of health of Russian Federation; Director of P. Hertsen Moscow oncology research institute; Head of Department of Oncology and Radiology of RUDN University

3, 2nd Botkinsky proezd, Moscow 125284; 
6, Miklukho-Maklay str., Moscow 117198 



References

1. Smith R.C., Varanelli M. Diagnosis and management of acute ureterolithiasis: CT is truth. Am. J. Roentgenol. 2000; 175 (1): 3–6. http://doi.org/10.2214/ajr.175.1.1750003

2. Sorensen M.D., Harper J.D., Hsi R.S. et al. B-mode ultrasound versus color Doppler twinkling artifact in detecting kidney stones. J. Endourol. 2013; 27 (2): 149–153. http://doi.org/10.1089/end.2012.0430

3. Aytaç S.K., Özcan H. Effect of color Doppler system on the twinkling sign associated with urinary tract calculi. J. Clin. Ultrasound. 1999; 27 (8): 433–439. http://doi.org/10.1002/(sici)1097-0096(199910)27:8<433::aid-jcu4>3.0.co;2-1

4. Lee J.Y., Kim S.H., Cho J.Y., Han D. Color and power Doppler twinkling artifacts from urinary stones: clinical observations and phantom studies. Am. J. Roentgenol. 2001; 176 (6): 1441–1445. http://doi.org/10.2214/ajr.176.6.1761441

5. Gromov A.I., Zykin B.I., Kubova S.Yu., Sytnik K.A. Tissue dopplerography. II. Diagnosis of stones in the distal ureter. Echography. 2003; 2 (4): 376–382. (In Russian)

6. Turrin A., Minola P., Costa F. et al. Diagnostic value of colour Doppler twinkling artefact in sites negative for stones on B mode renal sonography. Urol. Res. 2007; 35 (6): 313–317. http://doi.org/10.1007/s00240-007-0110-8

7. Park S.J., Yi B. H., Lee H.K. et al. Evaluation of patients with suspected ureteral calculi using sonography as an initial diagnostic tool: how can we improve diagnostic accuracy? J. Ultrasound Med. 2008; 27 (10): 1441–1450. http://doi.org/10.7863/jum.2008.27.10.1441

8. Dillman J.R., Kappil M., Weadock W.J. et al. Sonographic twinkling artifact for renal calculus detection: correlation with CT. Radiology. 2011; 259 (3): 911–916. http://doi.org/10.1148/radiol.11102128

9. Kielar A.Z., Shabana W., Vakili M., Rubin J. Prospective evaluation of Doppler sonography to detect the twinkling artifact versus unenhanced computed tomography for identifying urinary tract calculi. J. Ultrasound Med. 2012; 31 (10): 1619–1625. http://doi.org/10.7863/jum.2012.31.10.1619

10. Winkel R.R., Kalhauge A., Fredfeldt K.E. The usefulness of ultrasound colour-Doppler twinkling artefact for detecting urolithiasis compared with low dose nonenhanced computerized tomography. Ultrasound Med. Biol. 2012; 38 (7): 1180–1187. http://doi.org/10.1016/j.ultrasmedbio.2012.03.003

11. Korkmaz M., Aras B., Şanal B. et al. Investigating the clinical significance of twinkling artifacts in patients with urolithiasis smaller than 5 mm. Jpn. J. Radiol. 2014; 32 (8): 482–486. http://doi.org/10.1007/s11604-014-0337-6

12. Masch W.R., Cohan R.H., Ellis J.H. et al. Clinical effectiveness of prospectively reported sonographic twinkling artifact for the diagnosis of renal calculus in patients without known urolithiasis. Am. J. Roentgenol. 2016; 206 (2): 326–331. http://doi.org/10.2214/AJR.15.14998

13. Wood B.G., Urban M.W. Detecting kidney stones using twinkling artifacts: Survey of kidney stones with varying composition and size. Ultrasound Med. Biol. 46 (1): 156–166. http://doi.org/10.1016/j.ultrasmedbio.2019.09.008

14. Rahmouni A., Bargoin R., Herment A. et al. Color Doppler twinkling artifact in hyperechoic regions. Radiology. 1996; 199 (1): 269–271. http://doi.org/10.1148/radiology.199.1.8633158

15. Vasiliev A.Yu., Gromov A.I. Color Doppler mapping using power Doppler in the assessment of prostate pathology. Military Medical Journal. 1997; 318 (4): 33–37. (In Russian)

16. Chelfouh N., Grenier N., Higueret D. et al. Characterization of urinary calculi: in vitro study of “twinkling artifact” revealed by color-flow sonography. Am. J. Roentgenol. 1998; 171 (4): 1055–1060. http://doi.org/10.2214/ajr.171.4.9762996

17. Khan H.G., Gailloud P., Martin J.B. et al. Twinkling artifact on intracerebral color Doppler sonography. Am. J. Neuroradiol. 1999; 20 (2): 246–247.

18. Trillaud H., Pariente J. L., Rabie A., Grenier N. Detection of encrusted indwelling ureteral stents using a twinkling artifact revealed on color Doppler sonography. Am. J. Roentgenol. 2001; 176 (6): 1446–1448. http://doi.org/10.2214/ajr.176.6.1761446

19. Ustymowicz A., Krejza J., Mariak Z. Twinkling artifact in color Doppler imaging of the orbit. J. Ultrasound Med. 2002; 21 (5): 559–563. http://doi.org/10.7863/jum.2002.21.5.559

20. Gromov A.I., Zykin B.I. Tissue dopplerography. Registration using color dopplerography of the effect of resonance of microcalculi, which occurs under the influence of an ultrasonic wave. Echography. 2002; 3 (4): 348–353. (In Russian)

21. Kubova S.Yu. The value of the Doppler “twinkling artifact” for the diagnosis of calculi and interstitial calcifications: Abstract of Cand. Med. Sci. Obninsk, 2004. 22 p. (In Russian)

22. Gromov A.I., Kubova S.Yu. Ultrasonic artifacts. M.: Vidar-M, 2007. 64 p. (In Russian)

23. Kamaya A., Tuthill T., Rubin J.M. Twinkling artifact on color Doppler sonography: dependence on machine parameters and underlying cause. Am. J. Roentgenol. 2003; 180 (1): 215–222. http://doi.org/10.2214/ajr.180.1.1800215

24. Lelyuk V.G., Lelyuk S.E., Karpochev M.V. Doppler “twinkling” artifact in experiment and practice. Echography. 2003; 4 (1): 74–83. (In Russian)

25. Alan C., Koçoğlu H., Kosar S. et al. Role of twinkling artifact in characterization of urinary calculi. Actas Urol. Esp. (English Edition). 2011; 35 (7): 396–402. http://doi.org/10.1016/j.acuro.2011.02.006

26. Jamzad A., Setarehdan S.K. A novel approach for quantification and analysis of the color Doppler twinkling artifact with application in noninvasive surface roughness characterization: an in vitro phantom study. J. Ultrasound Med. 2014; 33 (4): 597–610. http://doi.org/10.7863/ultra.33.4.597

27. Shabana W., Bude R.O., Rubin J.M. Comparison between color Doppler twinkling artifact and acoustic shadowing for renal calculus detection: an in vitro study. Ultrasound Med. Biol. 2009; 35 (2): 339–350. http://doi.org/10.1016/j.ultrasmedbio.2008.09.023

28. Verhagen M.V., Watson T.A., Hickson M. et al. Acoustic shadowing in pediatric kidney stone ultrasound: a retrospective study with non-enhanced computed tomography as reference standard. Pediatr. Radiol. 2019; 49 (6): 777–783. http://doi.org/10.1007/s00247-019-04372-x

29. Lu W., Sapozhnikov O.A., Bailey M.R. et al. Evidence for trapped surface bubbles as the cause for the twinkling artifact in ultrasound imaging. Ultrasound Med. Biol. 2013; 39 (6): 1026–1038. https://doi.org/10.1016/j.ultrasmedbio.2013.01.011

30. Sapozhnikov O.A., Trusov L.A., Gromov A.I. et al. Radiation force imparted on a kidney stone by a Doppler-mode diagnostic pulse. J. Acoust. Soc. Am. 2006; 120 (5, Pt. 2): 3109. https://doi.org/10.1121/1.4787586

31. Sapozhnikov O.A., Owen N.R., Bailey M.R. et al. Use of scattering of ultrasound pulses and shock waves by kidney stones for imaging in lithotripsy. In: Proceedings of the 14th International Congress on Sound and Vibration. 2007; ICSV 2007: 229–236.

32. Gromov A.I., Kubova S.Y., Kapustin V.V. et al. Visualization of acoustic currents in liquid accumulations under ultrasound investigation. Eur. Radiol. (ECR 2007), Book of Abstracts. 17 Suppl. 1 (February 2007): 497.

33. Sapozhnikov O.A., Maxwell A.D., MacConaghy B., Bailey M.R. A mechanistic analysis of stone fracture in lithotripsy. J. Acoust. Soc. Am. 2007; 112 (2): 1190–1202. http://doi.org/10.1121/1.2404894

34. Sapozhnikov O.A., Bailey M.R. Radiation force of an arbitrary acoustic beam on an elastic sphere in a fluid. J. Acoust. Soc. Am. 2013; 133 (2): 661–676. http://doi.org/10.1121/1.4773924

35. Leonov D.V., Kulberg N.S., Gromov A.I., Morozov S.P., Kim S.Yu. Investigation of the causes of the twinkling artifact in the Doppler modes of an ultrasound medical diagnostic device. Akusticheskij Zhurnal. 2018; 64 (1): 100–111. (In Russian)

36. Kulberg N.S., Gromov A.I., Leonov D.V., Osipov L.V., Usanov M.S., Morozov S.P. Diagnostic mode for the detection of calcifications and calculi during ultrasound examination. Radiology-practice. 2018; 1 (67): 37–49. (In Russian)

37. Sapozhnikov O., Lu W., Bailey M.R. et al. Bubbles trapped on the surface of kidney stones as a cause of the twinkling artifact in ultrasound imaging. Proceedings Meet. Acoust. 2013; 19 (1): 075033. http://doi.org/10.1121/1.4800292

38. Lu W., Sapozhnikov O., Hsi R. et al. Evidence for trapped surface micro-bubbles as the etiology of the twinkling artifact observed from ultrasound imaging of kidney stones. J. Urol. 2013; 189 (4S): e830–e831. http://doi.org/10.1016/j.ultrasmedbio.2013.01.011

39. Harvey E.N., Barnes D.K., McElroy W.D. et al. Bubble formation in animals. I. Physical factors. J. Cellular Comparative Physiol. 1944; 24 (1): 1–22. https://doi.org/10.1002/jcp.1030240102

40. Sandersius S., Rez P. Morphology of crystals in calcium oxalate monohydrate kidney stones. Urol. Res. 2007; 35 (6): 287–293. http://doi.org/10.1007/s00240-007-0115-3

41. Racek M., Racek J., Hupáková I. Scanning electron microscopy in analysis of urinary stones. Scand. J. Clin. Lab. Invest. 2019; 79 (3): 208–217. http://doi.org/10.1080/00365513.2019.1578995

42. Tanabe M., Naito Y., Nishimoto M., Liu L. Effect of pulse repetition frequency on microcalcification detection in color flow imaging. Jap. J. App. Phys. 2014; 53 (7S): 07KF15.

43. Simon J.C., Sapozhnikov O.A., Kreider W. et al. The role of trapped bubbles in kidney stone detection with the color Doppler ultrasound twinkling artifact. Phys. Med. Biol. 2018; 63 (2): 025011. http://doi.org/10.1088/1361-6560/aa9a2f

44. Simon J.C., Holm J.R., Thiel J. et al. Evidence of microbubbles on kidney stones in humans. Ultrasound Med. Biol. 2020; 46 (7): 1802–1807. http://doi.org/10.1016/j.ultrasmedbio.2020.02.010

45. Leonov D.V., Kulberg N.S., Gromov A.I., Morozov S.P., Vladzimirsky A.V. Mode of detection of solid mineral inclusions in medical acoustic imaging Akusticheskij Zhurnal. 2018; 64 (5): 618–631. http://doi.org/10.1134/S0320791918050064 (In Russian)

46. Salmaslıoğlu A., Bulakçı M., Bakır B. et al. The usefulness of agent emission imaging-high mechanical index ultrasound mode in the diagnosis of urolithiasis: a prospective preliminary study. Diagn. Intervent. Radiol. 2018; 24 (3): 169–174. http://doi.org/10.5152/dir.2018.18005

47. Kim H.C., Yang D.M., Jin W. et al. Color Doppler twinkling artifacts in various conditions during abdominal and pelvic sonography. J. Ultrasound Med. 2010; 29 (4): 621–632. http://doi.org/10.7863/jum.2010.29.4.621

48. Leonov D.V. Ultrasound medical diagnostic system based on Doppler twinkling artifact: Abstract of Diss. Cand. Techn. Sci. M., 2018. 16 p. (In Russian)

49. Tsao T.F., Kang R.J., Gueng M.K. et al. Color Doppler twinkling artifact and clinical use. J. Med. Ultrasound. 2009; 17 (3): 157–166. https://doi.org/10.1016/S0929-6441(09)60122-3

50. Yang J.H., Kang G., Choi M.J. The role of the acoustic radiation force in color Doppler twinkling artifacts. Ultrasonography. 2015; 34 (2): 109–114. http://doi.org/10.14366/usg.14065

51. Bacha R., Gilani S.A., Manzoor I. Relation of color Doppler twinkling artifact and scale or pulse repetition frequency. J. Med. Ultrasound. 2019; 27 (1): 13–18. http://doi.org/10.4103/JMU.JMU_129_18

52. Gao J., Hentel K., Rubin J.M. Correlation between twinkling artifact and color Doppler carrier frequency: preliminary observations in renal calculi. Ultrasound Med. Biol. 2012; 38 (9): 1534–1539. http://doi.org/10.1016/j.ultrasmedbio.2012.04.011

53. Rokni E., Zinck S., Simon J.C. Evaluation of stone features that cause the color Doppler ultrasound twinkling artifact. Ultrasound Med. Biol. 2021; 47 (5): 1310–1318. http://doi.org/10.1016/j.ultrasmedbio.2021.01.016

54. Davran R. The usefulness of color Doppler twinkling artifact in the diagnosis of urinary calculi. Eur. J. Radiol. 2009; 71 (2): 378. https://doi.org/10.1016/j.ejrad.2008.06.021

55. Granata A., Maccarrone R., Raspanti F.G. et al. Ultrasonography for diagnosis and management of nephrolithiasis: state of the art and new perspectives. G. Ital. Nefrol. 2020; 37 (Suppl. 75).

56. Wang M., Ma Q., Chen Y. et al. Value of the color Doppler imaging mode in improving physicians’ diagnostic performance in patients with mid-ureteric stones larger than 5 mm: a retrospective study. Urolithiasis. 2021; 49 (5): 463–469. http://doi.org/10.1007/s00240-021-01250-w

57. Ng C., Tsung J.W. Avoiding computed tomography scans by using point-of-care ultrasound when evaluating suspected pediatric renal colic. J. Emergenc. Med. 2015; 49 (2): 165–171. http://doi.org/10.1016/j.jemermed.2015.01.017

58. Chan W., Stone M.B. Male with fever and flank pain. Ann. Emergenc. Med. 2016; 67 (1): E1–E2. https://doi.org/10.1016/j.annemergmed.2015.07.505

59. Sen V., Imamoglu C., Kucukturkmen I. et al. Can Doppler ultrasonography twinkling artifact be used as an alternative imaging modality to non-contrast-enhanced computed tomography in patients with ureteral stones? A prospective clinical study. Urolithiasis. 2017; 45 (2): 215–219. http://doi.org/10.1007/s00240-016-0891-8

60. Liu N., Zhang Y., Shan K. et al. Sonographic twinkling artifact for diagnosis of acute ureteral calculus. Wld J. Urol. 2020; 38 (2): 489–495. http://doi.org/10.1007/s00345-019-02773-z

61. Gliga M.L., Chirila C N., Podeanu D.M. et al. Twinkle, twinkle little stone: an artifact improves the ultrasound performance! Med. Ultrasonography. 2017; 19 (3): 272–275. http://doi.org/10.11152/mu-984

62. Bacha R., Manzoor I., Gilani S.A., Khan A.I. Clinical significance of twinkling artifact in the diagnosis of urinary stones. Ultrasound Med. Biol. 2019; 45 (12): 3199–3206. http://doi.org/10.1016/j.ultrasmedbio.2019.08.015

63. Al Saiady M., Alqatie A., Almushayqih M. Twinkle artifact in renal ultrasound, is it a solid point for the diagnosis of renal stone in children? J. Ultrasonography. 2021; 21 (87): e282–e285. http://doi.org/10.15557/JoU.2021.0048

64. Yavuz A., Ceken K., Alimoglu E., Kabaalioglu A. The reliability of color doppler “twinkling” artifact for diagnosing millimetrical nephrolithiasis: comparison with B-Mode US and CT scanning results. J. Med. Ultrasonics. 2015; 42 (2): 215–222. http://doi.org/10.1007/s10396-014-0599-8

65. Hanafi M.Q., Fakhrizadeh A., Jaafaezadeh E. An investigation into the clinical accuracy of twinkling artifacts in patients with urolithiasis smaller than 5 mm in comparison with computed tomography scanning. J. Family Med. Prim. Care. 2019; 8 (2): 401–406. http://doi.org/10.4103/jfmpc.jfmpc_300_18

66. Laher A.E., McDowall J., Gerber L. et al. The ultrasound ‘twinkling artefact’ in the diagnosis of urolithiasis: hocus or valuable point-of-care-ultrasound? A systematic review and meta-analysis. Eur. J. Emerg. Med. 2020; 27 (1): 13–20. http://doi.org/10.1097/MEJ.0000000000000601

67. Bulakçı M., Tefik T., Akbulut F. et al. The use of non-contrast computed tomography and color Doppler ultra-sound in the characterization of urinary stones-preliminary results. Turkish J. Urology. 2015; 41 (4): 165–170. http://doi.org/10.5152/tud.2015.91297

68. Hassani H., Raynal G., Spie R. et al. Imaging-based assessment of the mineral composition of urinary stones: an in vitro study of the combination of Hounsfield unit measurement in noncontrast helical computerized tomography and the twinkling artifact in color Doppler ultrasound. Ultrasound Med. Biol. 2012; 38 (5): 803–810. http://doi.org/10.1016/j.ultrasmedbio.2012.01.009

69. Shang M., Sun X., Liu Q. et al. Quantitative evaluation of the effects of urinary stone composition and size on color Doppler twinkling artifact: A phantom study. J. Ultrasound Med. 2017; 36 (4): 733–740. http://doi.org/10.7863/ultra.16.01039

70. Jamzad A., Setarehdan S.K. Noninvasive prediction of renal stone surface irregularities by numerical analysis of the color Doppler twinkling artifact: an ex vivo study. J. Ultrasound Med. 2018; 37 (5): 1211–1224. http://doi.org/10.1002/jum.14465

71. Kim H.J., Lee J.Y., Jang J.Y. et al. Color Doppler twinkling artifacts from gallstones: in vitro analysis regarding their compositions and architectures. Ultrasound Med. Biol. 2010; 36 (12): 2117–2122. http://doi.org/10.1016/j.ultrasmedbio.2010.08.021

72. Yu M.H., Lee J.Y., Yoon J.H. et al. Color Doppler twinkling artifacts from gallbladder adenomyomatosis with 1.8 MHz and 4.0 MHz color Doppler frequencies. Ultrasound Med. Biol. 2012; 38 (7): 1188–1194. http://doi.org/10.1016/j.ultrasmedbio.2012.03.010

73. Ghersin E., Soudack M., Gaitini, D. Twinkling artifact in gallbladder adenomyomatosis. J. Ultrasound Med. 2003; 22 (2): 229–231. http://doi.org/10.7863/jum.2003.22.2.229

74. Hammad A.Y., Miura J.T., Turaga K.K. et al. A literature review of radiological findings to guide the diagnosis of gallbladder adenomyomatosis. HPB. 2016; 18 (2): 129–135. http://doi.org/10.1016/j.hpb.2015.09.006

75. Ozan E., Atac G.K., and Gundogdu S. Twinkling artifact on color Doppler ultrasound: an advantage or a pitfall? J. Med. Ultrasonics. 2016; 43 (3): 361–371. http://doi.org/10.1007/s10396-016-0715-z

76. Tsujimoto F. Microcalcifications in the breast detected by a color Doppler method using twinkling artifacts: some important discussions based on clinical cases and experiments with a new ultrasound modality called multidetector-ultrasonography (MD-US). J. Med. Ultrasonics. 2014; 41 (1): 99–108. http://doi.org/10.1007/s10396-013-0476-x

77. Relea A., Alonso J.A., González M. et al. Usefulness of the twinkling artifact on Doppler ultrasound for the detection of breast microcalcifications. Radiología (English Edition). 2018; 60 (5): 413–423. http://doi.org/10.1016/j.rx.2018.04.004

78. Kang J., Han K., Song I. et al. Real-time ultrasound detection of breast microcalcifications using multifocus twinkling artifact imaging. IEEE Transact. Med. Imaging. 2022; 41 (5): 1300–1308. http://doi.org/10.1109/TMI.2021.3136901

79. Gromov A.I., Komin Yu.A., Mozerov S.A., Gromov A.I., Komin Yu.A., Mozerov S.A., Krasnickaya S.K. Twinkling artifact in differential diagnosis of mammary calcinates. Medical Visualization. 2021; 25 (3): 157–166. https://doi.org/10.24835/1607-0763-1025 (In Russian)

80. Yanik B., Conkbayir I., Çakmakçi E. et al. Color Doppler twinkling artifact in a calcified liver mass. J. Clin. Ultrasound. 2005; 33 (9): 474–476. http://doi.org/10.1002/jcu.20172

81. Tsao T.F., Kang R.J., Tyan Y.S. et al. Color Doppler twinkling artifact related to chronic pancreatitis with parenchymal calcification. Acta Radiol. 2006; 47 (6): 547–548. http://doi.org/10.1080/02841850600690371

82. Pabst G., Strobel K., Zehnder J. The value of the twinkling artefact for the diagnosis of sialolithiasis of the large salivary glands. J. Laryngol. Otol. 2018; 132 (2): 162–167. http://doi.org/10.1017/S002221511700250X

83. Tian J., Xu L. Color Doppler twinkling artifact in diagnosis of tuberculous pleuritis: A comparison with gray-scale ultrasonography and computed tomography. Ultrasound Med. Biol. 2018; 44 (6): 1291–1295. http://doi.org/10.1016/j.ultrasmedbio.2018.01.003

84. Serter S., Orguc S., Gumus B. et al. Doppler sonographic findings in testicular microlithiasis. Int. Braz. J. Urol. 2008; 34 (4): 477–484. http://doi.org/10.1590/s1677-55382008000400010

85. O’Flynn E.A., Sidhu P.S. The sonographic twinkling artifact in testicular calcification. J. Ultrasound Med. 2009; 28 (4): 515–517. http://doi.org/10.7863/jum.2009.28.4.515

86. Tsao T.F., Wu Y.L., Yu J.M. et al. Color Doppler twinkling artifact of calcified cardiac valves in vitro: a not well known phenomenon in echocardiography. Ultrasound Med. Biol. 2011; 37 (3): 386–392. http://doi.org/10.1016/j.ultrasmedbio.2010.12.001

87. Nagafuchi Y., Sumitomo S., Soroida Y. et al. The power Doppler twinkling artefact associated with periarticular calcification induced by intra-articular corticosteroid injection in patients with rheumatoid arthritis. Ann. Rheumat. Dis. 2013; 72 (7): 1267–1269. http://doi.org/10.1136/annrheumdis-2012-202897

88. Sharma G., Sharma A. Clinical implications and applications of the twinkling sign in ureteral calculus: a preliminary study. J. Urol. 2013; 189 (6): 2132–2135. http://doi.org/10.1016/j.juro.2012.11.176

89. Li T., Khokhlova T.D., Sapozhnikov O.A. et al. A new active cavitation mapping technique for pulsed HIFU applications – Bubble Doppler. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2014; 61 (10): 1698–1708. http://doi.org/10.1109/TUFFC.2014.006502


Review

For citations:


Gromov A.I., Sapozhnikov O.A., Kaprin A.D. Doppler twinkling artifact: physical mechanisms and place in diagnostic practice. State of the art. Medical Visualization. 2023;27(1):120-134. (In Russ.) https://doi.org/10.24835/1607-0763-1206

Views: 1444


ISSN 1607-0763 (Print)
ISSN 2408-9516 (Online)