Preview

Medical Visualization

Advanced search

Quantitative susceptibility mapping (QSM) in deep gray matter as a neurodegeneration marker in relapsing-remitting and secondary-progressive multiple sclerosis

https://doi.org/10.24835/1607-0763-1256

Abstract

Purpose. The aim of the study was to investigate changes in iron distribution in the brain of patients with multiple sclerosis (MS) using magnetic resonance imaging (MRI) technique – quantitative susceptibility mapping (QSM) – in comparison with clinical data.

Materials and methods. Three groups of patients were included in this prospective study: 47 patients with relapsing-remitting MS (RRMS), 20 patients with secondary progressive MS (SPMS) and 39 healthy controls. For all patients we collected clinical data, including history of present illness (H&P) and disability degree, and performed brain MRI followed by QSM maps obtaining and assessing relative magnetic susceptibility in subcortical structures.

Results. We found an increase in magnetic susceptibility in the heads of the caudate nuclei and in putamen in patients with SPMS as compared to RRMS. At the same time, a decrease in magnetic susceptibility in the thalamic pulvinar was detected in patients with MS in the long term, but a sharp hyperintensity in conjunction with decreasing volume was observed in some patients.

Conclusion. Increased magnetic susceptibility on the QSM in subcortical structures of the brain, reflecting iron content, is more typical for patients with SPMS, which may indicate the prognostic value of these changes.

About the Authors

M. S. Matrosova
Research center of neurology
Russian Federation

Maria S. Matrosova – graduate student, Radiologist

80-1, Volokolamskoye shosse, Moscow 125367


Competing Interests:

Авторы заявляют об отсутствии конфликта интересов



V. V. Bryukhov
Research center of neurology
Russian Federation

Vasiliy V. Bryukhov – Cand. of Sci. (Med.), Senior Research Associate, Radiologist

80-1, Volokolamskoye shosse, Moscow 125367



E. V. Popova
Pirogov Russian National Research Medical University of the Ministry of Healthcare of the Russian Federation; City Clinical Hospital №24 of Moscow Healthcare Department
Russian Federation

Ekaterina V. Popova – Doct. of Sci. (Med.), Head of Multiple Sclerosis Сenter in Moscow City Clinical Hospital 24; Assistant Professor, Pirogov Russian National Research Medical University Department of Neurology, Neurosurgery and Medical Genetics

house 1, Ostrivityanova str., Moscow 117997; 
10, Pistsovaya str., Moscow 127015



G. N. Belskaya
Research center of neurology
Russian Federation

Galina N. Belskaya –Doct. of Sci. (Med.), Professor, Head of Multidisciplinary Clinical and Diagnostic Center

80-1, Volokolamskoye shosse, Moscow 125367



M. V. Krotenkova
Research center of neurology
Russian Federation

Marina V. Krotenkova – Doct. of Sci. (Med.), Head of Department of Radiology, Main Researcher

80-1, Volokolamskoye shosse, Moscow 125367



References

1. Thompson A. J., Banwell B. L., Barkhof F., Carroll W. M., Coetzee T., Comi G., Correale J., Fazekas F., Filippi M., Freedman M. S., Fujihara K., Galetta S. L., Hartung H. P., Kappos L., Lublin F. D., Marrie R. A., Miller A. E., Miller D. H., Montalban, X., Mowry E. M., … Cohen J. A. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018; 17 (2): 162–173. https://doi.org/10.1016/S1474-4422(17)30470-2

2. Walton C., King R., Rechtman L., Kaye W., Leray E., Marrie R. A., Robertson N., La Rocca N., Uitdehaag B., van der Mei I., Wallin M., Helme A., Angood Napier C., Rijke N., Baneke P. Rising prevalence of multiple sclerosis worldwide: Insights from the Atlas of MS, third edition. Multiple Sclerosis Journal. 2020; 26 (14): 1816–1821. https://doi.org/10.1177/1352458520970841

3. Ontaneda D., Thompson A. J., Fox R. J., Cohen J. A. Progressive multiple sclerosis: prospects for disease therapy, repair, and restoration of function. Lancet (London, England). 2017; 389 (10076): 1357–1366. https://doi.org/10.1016/S0140-6736(16)31320-4

4. Zhang Y., Salter A., Jin S., Culpepper W.J. 2nd, Cutter G.R., Wallin M., Stuve O. Disease-modifying therapy prescription patterns in people with multiple sclerosis by age. Ther Adv Neurol Disord. 2021; 14: 17562864211006499. https://doi.org/10.1177/17562864211006499

5. Guan Y., Jakimovski D., Ramanathan M., Weinstock-Guttman B., Zivadinov R. The role of Epstein-Barr virus in multiple sclerosis: from molecular pathophysiology to in vivo imaging. Neural Regen Res. 2019; 14(3): 373-386. https://doi.org/10.4103/1673-5374.245462

6. Dendrou C.A., Fugger L., Friese M.A. Immunopathology of multiple sclerosis. Nat Rev Immunol. 2015; 15 (9): 545-58. https://doi.org/10.1038/nri3871

7. Uher T., Krasensky J., Malpas C., Bergsland N., Dwyer M.G., Kubala Havrdova E., Vaneckova M., Horakova D., Zivadinov R., Kalincik T. Evolution of Brain Volume Loss Rates in Early Stages of Multiple Sclerosis. Neurol Neuroimmunol Neuroinflamm. 2021; 8 (3): e979. https://doi.org/10.1212/NXI.0000000000000979

8. Stankiewicz J.M., Weiner H.L. An argument for broad use of high efficacy treatments in early multiple sclerosis. Neurol Neuroimmunol Neuroinflamm. 2019; 7 (1): e636. https://doi.org/10.1212/NXI.0000000000000636

9. Giovannoni G., Butzkueven H., Dhib-Jalbut S., Hobart J., Kobelt G., Pepper G., Sormani M.P., Thalheim C., Traboulsee A., Vollmer T. Brain health: time matters in multiple sclerosis. Mult Scler Relat Disord. 2016; Suppl 1: S5-S48. https://doi.org/10.1016/j.msard.2016.07.003

10. Filippi M., Rocca M.A., Ciccarelli O., De Stefano N., Evangelou N., Kappos L., Rovira A., Sastre-Garriga J., Tintorè M., Frederiksen J.L., Gasperini C., Palace J., Reich D.S., Banwell B., Montalban X., Barkhof F.; MAGNIMS Study Group. MRI criteria for the diagnosis of multiple sclerosis: MAGNIMS consensus guidelines. Lancet Neurol. 2016; 15 (3): 292-303. https://doi.org/10.1016/S1474-4422(15)00393-2

11. Traboulsee A., Simon J.H., Stone L., Fisher E., Jones D.E., Malhotra A., Newsome S.D., Oh J., Reich D.S., Richert N., Rammohan K., Khan O., Radue E.W., Ford C., Halper J., Li D. Revised Recommendations of the Consortium of MS Centers Task Force for a Standardized MRI Protocol and Clinical Guidelines for the Diagnosis and Follow-Up of Multiple Sclerosis. AJNR Am J Neuroradiol. 2016; 37 (3): 394-401. https://doi.org/10.3174/ajnr.A4539

12. Bryukhov V.V., Kulikova S.N., Krotenkova M.V., Peresedova A.V., Zavalishin I.A. State-of-the-art neuroimaging techniques in pathogenesis of multiple sclerosis. Annals of Clinical and Experimental Neurology. 2017; 7 (3): 47-54. https://doi.org/10.17816/psaic226 (In Russian)

13. Mahad D.H., Trapp B.D., Lassmann H. Pathological mechanisms in progressive multiple sclerosis. Lancet Neurol. 2015; 14 (2): 183-93. https://doi.org/10.1016/S1474-4422(14)70256-X

14. Frischer J.M., Bramow S., Dal-Bianco A., Lucchinetti C.F., Rauschka H., Schmidbauer M., Laursen H., Sorensen P.S., Lassmann H. The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain. 2009; 132 (5): 1175-89. https://doi.org/10.1093/brain/awp070

15. Lublin F.D., Reingold S.C., Cohen J.A., Cutter G.R., Sørensen P.S., Thompson A.J., Wolinsky J.S., Balcer L.J., Banwell B., Barkhof F., Bebo B. Jr, Calabresi P.A., Clanet M., Comi G., Fox R.J., Freedman M.S., Goodman A.D., Inglese M., Kappos L., Kieseier B.C., Lincoln J.A., Lubetzki C., Miller A.E., Montalban X., O'Connor P.W., Petkau J., Pozzilli C., Rudick R.A., Sormani M.P., Stüve O., Waubant E., Polman C.H. Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology. 2014; 83 (3): 278-86. https://doi.org/10.1212/WNL.0000000000000560

16. Khachanova N.V., Boyko A.N., Bakhtiyarova K.Z., Vlasov Y.V., Evdoshenko E.P., Sivertseva S.A., Schmidt T.E., Shumilina M.V. Recommendations from the Expert Meeting «Secondary progressive multiple sclerosis: unresolved issues and prospects». Neurology, Neuropsychiatry, Psychosomatics. 2019; 11 (4): 172-175. https://doi.org/10.14412/2074-2711-2019-4-172-175 (In Russian)

17. Steenwijk M.D., Daams M., Pouwels P.J., J Balk L., Tewarie P.K., Geurts J.J., Barkhof F., Vrenken H. Unraveling the relationship between regional gray matter atrophy and pathology in connected white matter tracts in long-standing multiple sclerosis. Hum Brain Mapp. 2015; 36 (5): 1796-807. https://doi.org/10.1002/hbm.22738

18. Krotenkova I.A., Briukhov V.V., Peresedova A.V., Krotenkova M.V. Atrophy of the central nervous system in multiple sclerosis: MRI-morphometry results. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2014; 114 (10 2): 50 56. (In Russian)

19. Krotenkova I.A., Bryukhov V.V., Zakharova M.N., Morozova S.N., Krotenkova M.V., Askarova L.S. Brain and spine atrophy in relapsing remitting multiple sclerosis: a 3-year follow-up study. Diagnostic radiology and radiotherapy. 2017; (1): 35-39. https://doi.org/10.22328/2079-5343-2017-1-35-39 (In Russian)

20. Cortese R., Collorone S., Ciccarelli O., Toosy A.T. Advances in brain imaging in multiple sclerosis. Therapeutic Advances in Neurological Disorders. 2019. https://doi.org/10.1177/1756286419859722

21. Belaidi A.A., Bush A.I. Iron neurochemistry in Alzheimer's disease and Parkinson's disease: targets for therapeutics. J. Neurochem. 2016; 139: 179-197. https://doi.org/10.1111/jnc.13425

22. Rouault T. Iron metabolism in the CNS: implications for neurodegenerative diseases. Nat Rev Neurosci. 2013; 14: 551–564. https://doi.org/10.1038/nrn3453

23. Ward R.J., Zucca F.A., Duyn J.H., Crichton R.R., Zecca L. The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol. 2014; 13 (10): 1045–1060. doi:10.1016/S1474-4422(14)70117-6

24. Gaasch J.A., Lockman P.R., Geldenhuys W.J., Allen D.D., Van der Schyf C.J. Brain Iron Toxicity: Differential Responses of Astrocytes, Neurons, and Endothelial Cells. Neurochem Res. 2007; 32: 1196–1208. https://doi.org/10.1007/s11064-007-9290-4

25. Li G., Wu R., Tong R., Bo B., Zhao Y., Gillen K.M., Spincemaille P., Ku Y., Du Y., Wang Y., Wang X., Li J. Quantitative Measurement of Metal Accumulation in Brain of Patients With Wilson's Disease. Mov Disord. 2020; 35: 1787-1795. https://doi.org/10.1002/mds.28141

26. Bagnato F., Hametner S., Yao B., van Gelderen P., Merkle H., Cantor F.K., Lassmann H., Duyn J.H. Tracking iron in multiple sclerosis: a combined imaging and histopathological study at 7 Tesla. Brain. 2011; 134 (12): 3602-15. https://doi.org/10.1093/brain/awr278

27. Gillen K.M., Mubarak M., Park C., Ponath G., Zhang S., Dimov A., Levine-Ritterman M., Toro S., Huang W., Amici S., Kaunzner U.W., Gauthier S.A., Guerau-de-Arellano M., Wang Y., Nguyen T.D., Pitt D. QSM is an imaging biomarker for chronic glial activation in multiple sclerosis lesions. Ann Clin Transl Neurol. 2021; 8 (4): 877-886. https://doi.org/10.1002/acn3.51338

28. Zhang Y., Gauthier S.A., Gupta A., Chen W., Comunale J., Chiang G., Zhou D., Askin G., Zhu W., Pitt D., Wang Y.F. Quantitative Susceptibility Mapping and R2* Measured Changes during White Matter Lesion Development in Multiple Sclerosis: Myelin Breakdown, Myelin Debris Degradation and Removal, and Iron Accumulation. AJNR Am J Neuroradiol. 2016; 37: 1629 - 1635. https://doi.org/10.3174/ajnr.A4825

29. Wisnieff C., Ramanan S., Olesik J., Gauthier S., Wang Y., Pitt D. Quantitative susceptibility mapping (QSM) of white matter multiple sclerosis lesions: Interpreting positive susceptibility and the presence of iron. Magn Reson Med. 2015; 74 (2): 564-70. https://doi.org/10.1002/mrm.25420

30. Wang Y., Spincemaille P., Liu Z., Dimov A., Deh K., Li J., Zhang Y., Yao Y., Gillen K.M., Wilman A.H., Gupta A., Tsiouris A.J., Kovanlikaya I., Chiang G.C., Weinsaft J.W., Tanenbaum L., Chen W., Zhu W., Chang S., Lou M., Kopell B.H., Kaplitt M.G., Devos D., Hirai T., Huang X., Korogi Y., Shtilbans A., Jahng G.H., Pelletier D., Gauthier S.A., Pitt D., Bush A.I., Brittenham G.M., Prince M.R. Clinical quantitative susceptibility mapping (QSM): Biometal imaging and its emerging roles in patient care. J Magn Reson Imaging. 2017; 46 (4): 951-971. https://doi.org/10.1002/jmri.25693

31. Chen W., Zhu W., Kovanlikaya I., Kovanlikaya A., Liu T., Wang S., Salustri C., Wang Y. Intracranial calcifications and hemorrhages: characterization with quantitative susceptibility mapping. Radiology. 2014; 270 (2): 496-505. https://doi.org/10.1148/radiol

32. Liu C., Wei H., Gong N.J., Cronin M., Dibb R., Decker K. Quantitative Susceptibility Mapping: Contrast Mechanisms and Clinical Applications. Tomography. 2015; 1 (1): 3-17. https://doi.org/10.18383/j.tom.2015.00136

33. Schweser F., Hagemeier J., Dwyer M.G., Bergsland N., Hametner S., Weinstock-Guttman B., Zivadinov R. Decreasing brain iron in multiple sclerosis: The difference between concentration and content in iron MRI. Hum Brain Mapp. 2021; 42 (5): 1463-1474. https://doi.org/10.1002/hbm.25306

34. Yu F.F., Chiang F.L., Stephens N., Huang S.Y., Bilgic B., Tantiwongkosi B., Romero R. Characterization of normal-appearing white matter in multiple sclerosis using quantitative susceptibility mapping in conjunction with diffusion tensor imaging. Neuroradiology. 2019; 61 (1): 71-79. https://doi.org/10.1007/s00234-018-2137-7

35. Kaunzner U.W., Kang Y., Zhang S., Morris E., Yao Y., Pandya S., Hurtado Rua S.M., Park C., Gillen K.M., Nguyen T.D., Wang Y., Pitt D., Gauthier S.A. Quantitative susceptibility mapping identifies inflammation in a subset of chronic multiple sclerosis lesions. Brain. 2019; 142 (1): 133-145. https://doi.org/10.1093/brain/awy296

36. Liu J., Liu T., de Rochefort L., Ledoux J., Khalidov I., Chen W., Tsiouris A.J., Wisnieff C., Spincemaille P., Prince M.R., Wang Y. Morphology enabled dipole inversion for quantitative susceptibility mapping using structural consistency between the magnitude image and the susceptibility map. Neuroimage. 2012; 59 (3): 2560-8. https://doi.org/10.1016/j.neuroimage.2011.08.082

37. Wang Y., Liu T. Quantitative susceptibility mapping (QSM): Decoding MRI data for a tissue magnetic biomarker. Magn Reson Med. 2015; 73 (1): 82-101. https://doi.org/10.1002/mrm.25358

38. Burgetova A., Dusek P., Vaneckova M., Horakova D., Langkammer C., Krasensky J., Sobisek L., Matras P., Masek M., Seidl Z. Thalamic Iron Differentiates Primary-Progressive and Relapsing-Remitting Multiple Sclerosis. AJNR Am J Neuroradiol. 2017; 38 (6): 1079-1086. https://doi.org/10.3174/ajnr.A5166

39. Papathanasiou A., Messinis L., Zampakis P., Panagiotakis G., Gourzis P., Georgiou V., Papathanasopoulos P. Thalamic atrophy predicts cognitive impairment in relapsing remitting multiple sclerosis. Effect on instrumental activities of daily living and employment status. J Neurol Sci. 2015; 358 (1-2): 236-42. https://doi.org/10.1016/j.jns.2015.09.001

40. Prakhova L.N., Bogdan A.A., Ilves A.G., Magonov E.P., Savintseva Z.I., Trofimova T.N. Features of thalamic neurodegeneration in patients with multiple sclerosis. Diagnostic radiology and radiotherapy. 2015; (4): 35-41. https://doi.org/10.22328/2079-5343-2015-4-35-41 (In Russian)

41. Zivadinov R., Schweser F., Dwyer M.G., Pol S. Detection of Monocyte/Macrophage and Microglia Activation in the TMEV Model of Chronic Demyelination Using USPIO-Enhanced Ultrahigh-Field Imaging. J Neuroimaging. 2020; 30 (6): 769-778. https://doi.org/10.1111/jon.12768


Supplementary files

Review

For citations:


Matrosova M.S., Bryukhov V.V., Popova E.V., Belskaya G.N., Krotenkova M.V. Quantitative susceptibility mapping (QSM) in deep gray matter as a neurodegeneration marker in relapsing-remitting and secondary-progressive multiple sclerosis. Medical Visualization. 2023;27(2):12-22. https://doi.org/10.24835/1607-0763-1256

Views: 688


ISSN 1607-0763 (Print)
ISSN 2408-9516 (Online)