Preview

Medical Visualization

Advanced search

Presurgical brain mapping of language processing with fMRI: state of the art and tendencies

https://doi.org/10.24835/10.24835/1607-0763-1094

Abstract

Presurgical brain mapping of language-eloquent cortex aims to minimize its injury during neurosurgery in patients with brain tumors and drug-resistant epilepsy, and thereby, to preserve their quality of life. Two main goals of language mapping are to identify the localization and lateralization of brain regions involved in language. Gold standards for them are the intraoperative mapping and Wada test, respectively; however, due to some limitations of these techniques, non-invasive preliminary language mapping becomes reasonable. During the last years, fMRI has been widely applied for such purposes. Our literature review focuses on innovations and actual tendencies which spread in the field of language mapping via fMRI in the last decade. State-of-the-art knowledge on brain organization of language, which underpins brain mapping of language processing via fMRI, is briefly described in the article. Contemporary studies of fMRI validity in localization and lateralization of language brain regions are considered. Strategies of presurgical language mapping, such as application of tractography in addition to fMRI, combined analysis of fMRI tasks as well as resting-state fMRI are also discussed. Well-established fMRI tasks for brain mapping of language production and comprehension, as well as new experimental developments in this field, are listed and described.

About the Authors

E. V. Pechenkova
Laboratory for Cognitive Research, Higher School of Economics
Russian Federation

Ekaterina V. Pechenkova – Cand. of Sci. (Psychology), Leading Research Fellow

4-2, Armyansky per., 101000 Moscow

Phone:+7-916-359-21-92 



Ya. R. Panikratova
Laboratory of Neuroimaging and Multimodal Analysis, Mental Health Research Center
Russian Federation

Yana R. Panikratova – Research Scientist

34, Kashirskoe shosse, 115522 Moscow



E. A. Mershina
Medical Research and Education Center of Lomonosov Moscow State University
Russian Federation

Elena A. Mershina – Cand. of Sci. (Med.), Head of CT and MRI Unit at Radiology Department

27-10, Lomonosovsky prospekt, 119192 Moscow



R. M. Vlasova
Department of Psychiatry, University of North Carolina
United States

Roza M. Vlasova – Cand. of Sci. (Psychology), Postdoctoral Fellow 

Chapel Hill



References

1. Fedorenko E., Kanwisher N. Neuroimaging of Language: Why Hasn't a Clearer Picture Emerged? Language and Linguistics Compass. 2009; 3 (4): 839–865. https://doi.org/10.1111/j.1749-818X.2009.00143.x

2. Ojemann G. A. Individual variability in cortical localization of language. J. Neurosurg. 1979; 50 (2): 164–169. https://doi.org/10.3171/jns.1979.50.2.0164

3. Ding J. R., Zhu F., Hua B. et al. Presurgical localization and spatial shift of resting state networks in patients with brain metastases. Brain Imaging Behav. 2019; 13 (2): 408–420. https://doi.org/10.1007/s11682-018-9864-6

4. Szelenyi A., Bello L., Duffau H. et al. Intraoperative electrical stimulation in awake craniotomy: methodological aspects of current practice. Neurosurg. Focus. 2010; 28 (2): E7. https://doi.org/10.3171/2009.12.FOCUS09237

5. Dragoy O., Chrabaszcz A., Tolkacheva V., Buklina S. Russian Intraoperative Naming Test: a Standardized Tool to Map Noun and Verb Production during Awake Neurosurgeries. The Russian Journal of Cognitive Science. 2016; 3 (4): 4–25

6. Ritaccio A. L., Brunner P., Schalk G. Electrical Stimulation Mapping of the Brain: Basic Principles and Emerging Alternatives. J. Clin. Neurophysiol. 2018; 35 (2): 86–97. https://doi.org/10.1097/WNP.0000000000000440

7. Szelenyi A., Senft C., Jardan M. et al. Intra-operative subcortical electrical stimulation: a comparison of two methods. Clin. Neurophysiol. 2011; 122 (7): 1470–1475. https://doi.org/10.1016/j.clinph.2010.12.055

8. Tate M.C., Guo L., McEvoy J., Chang E.F. Safety and efficacy of motor mapping utilizing short pulse train direct cortical stimulation. Stereotact Funct. Neurosurg. 2013; 91 (6): 379–385. https://doi.org/10.1159/000350020

9. Riva M., Fava E., Gallucci M. et al. Monopolar highfrequency language mapping: can it help in the surgical management of gliomas? A comparative clinical study. J. Neurosurg. 2016; 124 (5): 1479–1489. https://doi.org/10.3171/2015.4.JNS14333

10. Verst S.M., de Aguiar P.H.P., Joaquim M.A.S. et al. Monopolar 250-500Hz language mapping: Results of 41 patients. Clin. Neurophysiol. Pract. 2019; 4: 1–8. https://doi.org/10.1016/j.cnp.2018.11.002

11. Kim P.E., Singh M. Functional magnetic resonance imaging for brain mapping in neurosurgery. Neurosurg. Focus. 2003; 15 (1): E1. https://doi.org/10.3171/foc.2003.15.1.1

12. Papanicolaou A.C., Wheless J.W., Babajani-Feremi A. et al. Letter re: Practice guideline summary: Use of fMRI in the presurgical evaluation of patients with epilepsy: Report of the Guideline Development, Dissemination, and Implemen tation Subcommittee of the American Academy of Neurology. Neurology. 2017; 89 (6): 640. https://doi.org/10.1212/WNL.0000000000004204

13. Bakulin I.S., Poydasheva A.G., Medyntsev A.A., Suponeva N.A., Piradov M.A. Transcranial magnetic stimulation in cognitive neuroscience: Methodological basis and safety. The Russian Journal of Cognitive Science. 2020. 7 (3): 25–44. https://doi.org/10.47010/20.3.2. (In Russian)

14. Bowyer S.M., Zillgitt A., Greenwald M., Lajiness-O'Neill R. Language Mapping With Magnetoencephalography: An Update on the Current State of Clinical Research and Practice With Considerations for Clinical Practice Guidelines. J. Clin. Neurophysiol. 2020; 37 (6): 554–563. https://doi.org/10.1097/WNP.0000000000000489

15. Grummich P., Nimsky C., Pauli E. et al. Combining fMRI and MEG increases the reliability of presurgical language localization: a clinical study on the difference between and congruence of both modalities. Neuroimage. 2006; 32 (4): 1793–803. https://doi.org/10.1016/j.neuroimage.2006.05.034

16. Najib U., Bashir S., Edwards D., Rotenberg A., PascualLeone A. Transcranial brain stimulation: clinical applications and future directions. Neurosurg. Clin. N. Am. 2011; 22 (2): 233–251, ix. https://doi.org/10.1016/j.nec.2011.01.002

17. Papanicolaou A.C., Rezaie R., Narayana S. et al. Is it time to replace the Wada test and put awake craniotomy to sleep? Epilepsia. 2014; 55 (5): 629–632. https://doi.org/10.1111/epi.12569

18. Benjamin C.F.A., Li A.X., Blumenfeld H. et al. Presurgical language fMRI: Clinical practices and patient outcomes in epilepsy surgical planning. Hum. Brain Mapp. 2018; 39 (7): 2777–2785. https://doi.org/10.1002/hbm.24039

19. Kremneva E.I., Konovalov R.N., Krotenkova M.V. Functional Magnetic Resonance Imaging. Annaly Klinicheskoy i Experimental'noy Nevrologii = Annals of Clinical and Experimental Neurology. 2011; 5 (1): 30–34. (In Russian)

20. Ternovoy S.K., Sinitsyn V.E., Morozov S.P. Application of Functional MRI in Neurosurgery of Cerebral Tumors. Medicinskaja vizualizacija = Medical Visualization. 2002; 2: 5–10. (In Russian)

21. Vlasova R.M., Pechenkova E.V., Sinitsyn V.E., Stepanyan M.A. Conjoint Use of Functional Magnetic Resonance Imaging and Neuropsychological Assessment in Neurosurgery of Brain Tumors: Presurgical Diagnostics. Kubanskii nauchnyi meditsinskii vestnik = Kuban Scientific Medical Bulletin. 2010; (6): 38–43. (In Russian)

22. Tokarev A.S., Stepanov V.N., Shatokhina Yu.I., Chuvilin S.A., Shalumov A.Z. The usage of functional magnetic resonance imaging of brain in neurosurgery. Russian Journal of Neurosurgery. 2017; (2): 3–10. (In Russian)

23. Dmitriev A.Yu., Dashyan V.G. Sodium Fluorescein and Indocyanine Green in Neuro-Oncology and Surgery of Brain Arteriovenous Malformations. Review. Vestnik nevrologii, psihiatrii i nejrohirurgii = Bulletin of Neurology, Psychiatry and Neurosurgery. 2021; 8: 614–627. https://doi.org/10.33920/med-01-2108-04 (In Russian)

24. Geschwind N. Language and the brain. Sci. Am. 1972; 226 (4): 76–83. https://doi.org/10.1038scientificamerican0472-76

25. Anderson J.M., Gilmore R., Roper S. et al. Conduction aphasia and the arcuate fasciculus: A reexamination of the Wernicke-Geschwind model. Brain Lang. 1999; 70 (1): 1–12. https://doi.org/10.1006/brln.1999.2135

26. Catani M., Jones D.K., Ffytche D.H. Perisylvian language networks of the human brain. Ann Neurol. 2005; 57 (1): 8–16. https://doi.org/10.1002/ana.20319

27. Tremblay P., Dick A.S. Broca and Wernicke are dead, or moving past the classic model of language neurobiology. Brain Lang. 2016; 162: 60–71. https://doi.org/10.1016/j.bandl.2016.08.004

28. Mazoyer B., Zago L., Jobard G. et al. Gaussian mixture modeling of hemispheric lateralization for language in a large sample of healthy individuals balanced for handedness. PLoS One. 2014; 9 (6): e101165. https://doi.org/10.1371/journal.pone.0101165

29. Kundu B., Rolston J.D., Grandhi R. Mapping language dominance through the lens of the Wada test. Neurosurg. Focus. 2019; 47 (3): E5. https://doi.org/10.3171/2019.6.FOCUS19346

30. Partovi S., Jacobi B., Rapps N. et al. Clinical standardized fMRI reveals altered language lateralization in patients with brain tumor. Am. J. Neuroradiol. 2012; 33 (11): 2151–2157. https://doi.org/10.3174/ajnr.A3137

31. Li Q., Dong J.W., Del Ferraro G. et al. Functional Translocation of Broca's Area in a Low-Grade Left Frontal Glioma: Graph Theory Reveals the Novel, Adaptive Network Connectivity. Front Neurol. 2019; 10: 702. https://doi.org/10.3389/fneur.2019.00702

32. Kuchukhidze G., Siedentopf C., Unterberger I. et al. Language Dominance in Patients With Malformations of Cortical Development and Epilepsy. Front Neurol. 2019; 10: 1209. https://doi.org/10.3389/fneur.2019.01209

33. Hickok G., Poeppel D. The cortical organization of speech processing. Nat. Rev. Neurosci. 2007; 8 (5): 393–402. https://doi.org/10.1038/nrn2113

34. Yuan D., Luo D., Kwok V.P.Y. et al. Myeloarchitectonic Asymmetries of Language Regions in the Human Brain. Cereb. Cortex. 2021; 31 (9): 4169–4179. https://doi.org/10.1093/cercor/bhab076

35. Bradshaw A.R., Bishop D.V.M., Woodhead Z.V.J. Methodological considerations in assessment of language lateralisation with fMRI: a systematic review. Peer J. 2017; 5: e3557. https://doi.org/10.7717/peerj.3557

36. Tailby C., Abbott D.F., Jackson G.D. The diminishing dominance of the dominant hemisphere: Language fMRI in focal epilepsy. Neuroimage Clin. 2017; 14: 141–150. https://doi.org/10.1016/j.nicl.2017.01.011

37. Polczynska M., Japardi K., Curtiss S. et al. Improving language mapping in clinical fMRI through assessment of grammar. Neuroimage Clin. 2017; 15: 415–427. https://doi.org/10.1016/j.nicl.2017.05.021

38. Walenski M., Europa E., Caplan D., Thompson C.K. Neural networks for sentence comprehension and production: An ALE-based meta-analysis of neuroimaging studies. Hum. Brain Mapp. 2019; 40 (8): 2275–2304. https://doi.org/10.1002/hbm.24523

39. Middlebrooks E.H., Yagmurlu K., Szaflarski J.P. et al. A contemporary framework of language processing in the human brain in the context of preoperative and intraoperative language mapping. Neuroradiology. 2017; 59 (1): 69–87. https://doi.org/10.1007/s00234-016-1772-0

40. Benjamin C.F., Walshaw P.D., Hale K. et al. Presurgical language fMRI: Mapping of six critical regions. Hum. Brain Mapp. 2017; 38 (8): 4239–4255. https://doi.org/10.1002/hbm.23661

41. Lopez-Barroso D., Catani M., Ripolles P. et al. Word learning is mediated by the left arcuate fasciculus. Proc. Natl. Acad. Sci U S A. 2013; 110 (32): 13168–13173. https://doi.org/10.1073/pnas.1301696110

42. Hickok G., Poeppel D. Neural Basis of Speech Perception. In: Neurobiology of Language / G. Hickok, S.L. Small (eds). Elsevier, 2016: 299–310.

43. Hickok G. The cortical organization of speech processing: feedback control and predictive coding the context of a dual-stream model. J. Commun. Disord. 2012; 45 (6): 393–402. https://doi.org/10.1016/j.jcomdis.2012.06.004

44. Duffau H., Moritz-Gasser S., Mandonnet E. A re-examination of neural basis of language processing: proposal of a dynamic hodotopical model from data provided by brain stimulation mapping during picture naming. Brain Lang. 2014; 131: 1–10. https://doi.org/10.1016/j.bandl.2013.05.011

45. Akhutina T.V. The Model of Language Production by Leontiev and Ryabova: 1967–2005. In: Psihologija, lingvistika i mezhdisciplinarnye svjazi = Psychology, Linguistics and Interdisciplinary Linkages / T.V. Akhutina, D.A. Leontiev (eds). Moscow: Smysl, 2008: 79–104. (In Russian)

46. Alemi R., Batouli S.A.H., Behzad E. et al. Not single brain areas but a network is involved in language: Applications in presurgical planning. Clin. Neurol. Neurosurg. 2018; 165: 116–128. https://doi.org/10.1016/j.clineuro.2018.01.009

47. Unadkat P., Fumagalli L., Rigolo L. et al. Functional MRI Task Comparison for Language Mapping in Neurosurgical Patients. J. Neuroimaging. 2019; 29 (3): 348–356. https://doi.org/10.1111/jon.12597

48. Barnett A., Marty-Dugas J., McAndrews M.P. Advantages of sentence-level fMRI language tasks in presurgical language mapping for temporal lobe epilepsy. Epilepsy Behav. 2014; 32: 114–120. https://doi.org/10.1016/j.yebeh.2014.01.010

49. Genetti M., Tyrand R., Grouiller F. et al. Comparison of high gamma electro corticography and fMRI with electrocortical stimulation for localization of somatosensory and language cortex. Clin. Neurophysiol. 2015; 126 (1): 121–130. https://doi.org/10.1016/j.clinph.2014.04.007

50. Babajani-Feremi A., Narayana S., Rezaie R. et al. Language mapping using high gamma electro corticography, fMRI, and TMS versus electrocortical stimulation. Clin. Neurophysiol. 2016; 127 (3): 1822–1836. https://doi.org/10.1016/j.clinph.2015.11.017

51. Weng H.H., Noll K.R., Johnson J.M. et al. Accuracy of Presurgical Functional MR Imaging for Language Mapping of Brain Tumors: A Systematic Review and Meta-Analysis. Radiology. 2018; 286 (2): 512–523. https://doi.org/10.1148/radiol.2017162971

52. Kundu B., Penwarden A., Wood J.M. et al. Association of functional magnetic resonance imaging indices with postoperative language outcomes in patients with primary brain tumors. Neurosurg. Focus. 2013; 34 (4): E6. https://doi.org/10.3171/2013.2.FOCUS12413

53. Mellerio C., Charron S., Lion S. et al. Perioperative functional neuroimaging of gliomas in eloquent brain areas. Neurochirurgie. 2017; 63 (3): 129–134. https://doi.org/10.1016/j.neuchi.2016.10.012

54. Polczynska M.M. Organizing Variables Affecting fMRI Estimates of Language Dominance in Patients with Brain Tumors. Brain Sci. 2021; 11 (6). https://doi.org/10.3390/brainsci11060694

55. FitzGerald D.B., Cosgrove G.R., Ronner S. et al. Location of Language in the Cortex: A Comparison between Functional MR Imaging and Electrocortical Stimulation. Am. J. Neuroradiol. 1997; 18 (8): 1529–1539.

56. Roux F.E., Boulanouar K., Lotterie J.A. et al. Language functional magnetic resonance imaging in preoperative assessment of language areas: correlation with direct cortical stimulation. Neurosurgery. 2003; 52 (6): 1335– 1345; discussion 1345–1347. https://doi.org/10.1227/01.neu.0000064803.05077.40

57. Austermuehle A., Cocjin J., Reynolds R. et al. Language functional MRI and direct cortical stimulation in epilepsy preoperative planning. Ann. Neurol. 2017; 81 (4): 526– 537. https://doi.org/10.1002/ana.24899

58. Bizzi A., Blasi V., Falini A. et al. Presurgical functional MR imaging of language and motor functions: validation with intraoperative electrocortical mapping. Radiology. 2008; 248 (2): 579–589. https://doi.org/10.1148/radiol.2482071214

59. Lu J.F., Zhang H., Wu J.S. et al. “Awake” intraoperative functional MRI (ai-fMRI) for mapping the eloquent cortex: Is it possible in awake craniotomy? Neuroimage Clin. 2012; 2: 132–142. https://doi.org/10.1016/j.nicl.2012.12.002

60. Nadkarni T.N., Andreoli M.J., Nair V.A. et al. Usage of fMRI for pre-surgical planning in brain tumor and vascular lesion patients: task and statistical threshold effects on language lateralization. Neuroimage Clin. 2015; 7: 415–423. https://doi.org/10.1016/j.nicl.2014.12.014

61. Auer T., Schweizer R., Frahm J. An iterative two-threshold analysis for single-subject functional MRI of the human brain. Eur. Radiol. 2011; 21 (11): 2369–2387. https://doi.org/10.1007/s00330-011-2184-5

62. Mendez Orellana C., Visch-Brink E., Vernooij M. et al. Crossed cerebrocerebellar language lateralization: an additional diagnostic feature for assessing atypical language representation in presurgical functional MR imaging. Am. J. Neuroradiol. 2015; 36 (3): 518–524. https://doi.org/10.3174/ajnr.A4147

63. Loddenkemper T., Morris H.H., Moddel G. Complications during the Wada test. Epilepsy Behav. 2008; 13 (3): 551–553. https://doi.org/10.1016/j.yebeh.2008.05.014

64. Dym R.J., Burns J., Freeman K., Lipton M.L. Is functional MR imaging assessment of hemispheric language dominance as good as the Wada test?: a meta-analysis. Radiology. 2011; 261 (2): 446–455. https://doi.org/10.1148/radiol.11101344

65. Wang A., Peters T.M., de Ribaupierre S., Mirsattari S.M. Functional magnetic resonance imaging for language mapping in temporal lobe epilepsy. Epilepsy Res. Treat. 2012; 2012: 198183. https://doi.org/10.1155/2012/198183

66. Bauer P.R., Reitsma J.B., Houweling B.M. et al. Can fMRI safely replace the Wada test for preoperative assessment of language lateralisation? A meta-analysis and systematic review. J. Neurol. Neurosurg. Psychiatry. 2014; 85 (5): 581–588. https://doi.org/10.1136/jnnp-2013-305659

67. Janecek J.K., Swanson S.J., Sabsevitz D.S. et al. Language lateralization by fMRI and Wada testing in 229 patients with epilepsy: rates and predictors of discordance. Epilepsia. 2013; 54 (2): 314–322. https://doi.org/10.1111/epi.12068

68. Szaflarski J.P., Gloss D., Binder J.R. et al. Practice guideline summary: Use of fMRI in the presurgical evaluation of patients with epilepsy: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology. 2017; 88 (4): 395–402. https://doi.org/10.1212/WNL.0000000000003532

69. Sanjuan A., Forn C., Ventura-Campos N. et al. The sentence verification task: a reliable fMRI protocol for mapping receptive language in individual subjects. Eur. Radiol. 2010; 20 (10): 2432–2438. https://doi.org/10.1007/s00330-010-1814-7

70. Sanjuan A., Bustamante J.C., Forn C. et al. Comparison of two fMRI tasks for the evaluation of the expressive language function. Neuroradiology. 2010; 52 (5): 407– 415. https://doi.org/10.1007/s00234-010-0667-8

71. de Guibert C., Maumet C., Ferre J.C. et al. FMRI language mapping in children: a panel of language tasks using visual and auditory stimulation without reading or metalinguistic requirements. Neuroimage. 2010; 51 (2): 897–909. https://doi.org/10.1016/j.neuroimage.2010.02.054

72. Mahdavi A., Houshmand S., Oghabian M.A. et al. Developing optimized fMRI protocol for clinical use: comparison of different language paradigms. J. Magn. Reson. Imaging. 2011; 34 (2): 413–419. https://doi.org/10.1002/jmri.22604

73. Zaca D., Nickerson J.P., Deib G., Pillai J.J. Effectiveness of four different clinical fMRI paradigms for preoperative regional determination of language lateralization in patients with brain tumors. Neuroradiology. 2012; 54 (9): 1015–1025. https://doi.org/10.1007/s00234-012-1056-2

74. Chang Y.A., Javadi S.S., Bahrami N. et al. Mapping lexicalsemantic networks and determining hemispheric language dominance: Do task design, sex, age, and language performance make a difference? Brain Lang. 2018; 179: 42–50. https://doi.org/10.1016/j.bandl.2018.02.005

75. Mohtasib R.S., Alghamdi J.S., Baz S.M. et al. Developing fMRI protocol for clinical use. Comparison of 6 Arabic paradigms for brain language mapping in native Arabic speakers. Neurosciences (Riyadh). 2021; 26 (1): 45–55. https://doi.org/10.17712/nsj.2021.1.20200012

76. Black D.F., Vachha B., Mian A. et al. American Society of Functional Neuroradiology-Recommended fMRI Paradigm Algorithms for Presurgical Language Assessment. Am. J. Neuroradiol. 2017; 38 (10): E65–E73. https://doi.org/10.3174/ajnr.A5345

77. Omisade A., O'Grady C.B., Schmidt M.H., Fisk J.D. Visual and Auditory fMRI Paradigms for Presurgical Language Mapping: Convergent Validity and Relationship to Individual Variables. Neurol. Res. Int. 2019; 2019: 6728120. https://doi.org/10.1155/2019/6728120

78. Ramsey N.F., Sommer I.E., Rutten G.J., Kahn R.S. Combined analysis of language tasks in fMRI improves assessment of hemispheric dominance for language functions in individual subjects. Neuroimage. 2001; 13 (4): 719–733. https://doi.org/10.1006/nimg.2000.0722

79. Litvinova L.D., Pechenkova E.V., Vlasova R.M., Berezutskaya Yu.N., Sinitsyn V.E. Brain Mapping of Speech Perception: Comparison of Three fMRI Tasks in Russian. International Symposium on Functional Neuroimaging. Moscow: Moscow State University of Psychology & Education, 2012: 76–79. (In Russian)

80. Rumshiskaya A.D., Vlasova R., Litvinova L. et al. Combined analysis of two tasks improves localization of Wernicke's area in patients with primary brain tumors. European Congress of Radiology (ECR). Vienna, Austria, 2014. https://doi.org/10.1594/ecr2014/C-1232

81. Bradshaw A.R., Thompson P.A., Wilson A.C. et al. Measuring language lateralisation with different language tasks: a systematic review. PeerJ. 2017; 5: e3929. https://doi.org/10.7717/peerj.3929

82. Partovi S., Konrad F., Karimi S. et al. Effects of covert and overt paradigms in clinical language fMRI. Acad. Radiol. 2012; 19 (5): 518–525. https://doi.org/10.1016/j.acra.2011.12.017

83. Croft L.J., Rankin P.M., Liegeois F. et al. To speak, or not to speak? The feasibility of imaging overt speech in children with epilepsy. Epilepsy Res. 2013; 107 (1–2): 195–199. https://doi.org/10.1016/j.eplepsyres.2013.08.008

84. Wilson S.M., Bautista A., Yen M. et al. Validity and reliability of four language mapping paradigms. Neuroimage Clin. 2017; 16: 399–408. https://doi.org/10.1016/j.nicl.2016.03.015

85. Berro D.H., Lemee J.M., Leiber L.M. et al. Overt speech feasibility using continuous functional magnetic resonance imaging: Isolation of areas involved in phonology and prosody. J. Neurosci Res. 2020; 98 (12): 2554–2565. https://doi.org/10.1002/jnr.24723

86. Ignatyev G.A., Vlasova R.M., Akinina Y.S., Zavyalova V.V., Ushakov V.L., Ivanova M.V., Dragoy O.V. An fMRI Study of Sentence Reading: The Effect of Control Condition. Cognitive Science in Moscow: New Research. Conference proceedings / E.V. Pechenkova, M.V. Falikman (eds). Moscow: Buki Vedi, Institute of Practical Psychology and Psychoanalysis, 2015: 158–164. (In Russian)

87. Price C.J., Devlin J.T., Moore C.J. et al. Meta-analyses of object naming: effect of baseline. Hum. Brain. Mapp. 2005; 25 (1): 7082. https://doi.org/10.1002/hbm.20132

88. Vlasova R.M. Brain Mechanisms of Language Nominative Function: Neuropsychological and Neuroimaging approach: PhD thesis. Lomonosov Moscow State University. Moscow, 2013. (In Russian)

89. Karakas S., Baran Z., Ceylan A.O. et al. A comprehen sive neuropsychological mapping battery for functional magnetic resonance imaging. Int. J. Psychophysiol. 2013; 90 (2): 215–234. https://doi.org/10.1016/j.ijpsycho.2013.07.007

90. Thakkar I., Arrano-Carrasco L., Cortes-Rivera B. et al. Alternative language paradigms for functional magnetic resonance imaging as presurgical tools for inducing crossed cerebro-cerebellar language activations in brain tumor patients. Eur. Radiol. 2021. https://doi.org/10.1007/s00330-021-08137-9

91. Mahdavi A., Azar R., Shoar M.H. et al. Functional MRI in clinical practice: Assessment of language and motor for pre-surgical planning. Neuroradiol J. 2015; 28 (5): 468– 473. https://doi.org/10.1177/1971400915609343

92. Gould L., Mickleborough M.J., Wu A. et al. Presurgical language mapping in epilepsy: Using fMRI of reading to identify functional reorganization in a patient with longstanding temporal lobe epilepsy. Epilepsy Behav. Case Rep. 2016; 5: 6–10. https://doi.org/10.1016/j.ebcr.2015.10.003

93. Tie Y., Rigolo L., Ozdemir Ovalioglu A. et al. New Paradigm for Individual Subject Language Mapping: MovieWatching fMRI. J. Neuroimaging. 2015; 25 (5): 710–720. https://doi.org/10.1111/jon.12251

94. Buklina S.B., Podoprigora A.E., Pronin I.N., Boldyreva G.N., Bondarenko A.A., Pjashina D. V., Fadeeva L.M., Kornienko V.N. fMRI Studies of Language Hemisphere Dominance in Patients with Brain Tumors. International Symposium on Functional Neuroimaging. Moscow: Moscow State University of Psychology & Education, 2012: 52–55. (In Russian)

95. Vlasova R.M., Sinitsyn V.E., Pechenkova E.V. The Effect of Word Frequency on the Brain Correlates of Object Naming in Russian. The Russian Journal of Cognitive Science. 2015; 2 (1): 24–40

96. Kremneva E.I., Konovalov R.N., Krotenkova M.V., Kadykov A.S., Bogolepova I.N., Belopasova A.V. Functional Magnetic Resonance Mapping of Language Cortex in Healthy Subjects. Luchevaja diagnostika i terapija = Diagnostic Radiology and Radiotherapy. 2012; 2 (3): 65–72. (In Russian)

97. Korobkova L.A., Vlasova R.M., Sinitsyn V.E., Pechenkova E.V. Nomination and articulation: fMRI research. Cognitive Science in Moscow: New Research. Conference proceedings / E.V. Pechenkova, M.V. Falikman (eds). Moscow: Buki Vedi, Institute of Practical Psychology and Psychoanalysis, 2015: 190–196. (In Russian)

98. Dragoy O.V., Vlasova R.M., Kozintseva E.G., Malyutina S.A., Akinina Yu.S., Petrushevsky A.G., Fedina O.N., Gutyrchik E.F., Ivanova M.V. fMRI Study of Action Naming in Aphasia. Cognitive Science in Moscow: New Research. Conference proceedings / E.V. Pechenkova, M.V. Falikman (eds). Moscow: Buki Vedi, Institute of Practical Psychology and Psychoanalysis, 2015: 119–124. (In Russian)

99. Vlasova R.M., Pechenkova E.V., Akhutina T.V., Sinitsyn V.E., Sitnikov A.R. Action Naming Based on Pictures: an fMRI study. International Symposium on Functional Neuroimaging. Moscow: Moscow State University of Psychology & Education, 2012: 58–60. (In Russian)

100. Pechenkova E.V., Vlasova R.M., Novikova M.V., Falikman M.V., Sinitsyn V.E. Reading sentences as activation task for functional MRI. Rossijskij jelektronnyj zhurnal luchevoj diagnostiki = Russian Electronic Journal of Radiology. 2012; 2 (2): 406–407. (In Russian)

101. Belopasova A.V., Kadykov A.S., Konovalov R.N., Kremneva E.I. Organization of Language Network in Healthy Subjects and Its Reorganization in Patients with Poststroke Aphasia.Annaly Klinicheskoy i Experimental'noy Nevrologii = Annals of Clinical and Experimental Neurology. 2013; 7 (1): 25–30. (In Russian)

102. Vlasova R.M., Pechenkova E.V., Akhutina T.V., Sinitsyn V.E. Structural-Functional Organization of Usage of Verbs and Nouns Depending on Strategy of Their Actualization. Voprosy Psychologii. 2012; 4: 128–138. (In Russian)

103. Bolgina T.A., Malyutina S.A., Zavyalova V.V., Ignatiev G.A., Vlasova R.M., Ushakov V.L., Ivanova M.V., Dragoy O.V. Russian-language fMRI paradigm for localization of language brain areas. VIIIth International Conference on Cognitive Science / Yu. I. Alexandrov, K. V. Anokhin (eds). Svetlogorsk: Psychological Institute of Russian Academy of Sciences, 2016: 163–164. (In Russian)

104. Kuptsova S.V., Vlasova R.M., Dragoy O.V., Ivanova M.V., Malyutina S.A., Petrushevskiy A.G., Fedina O.N., Gutyrchik E.F. Reorganization of Language Brain Areas in Patients with Different Aphasia Types. Vestnik Voronezhskogo gosudarstvennogo universiteta. Serija: lingvistika i mezhkul'turnaja kommunikacija = Proceedings of Voronezh State University. Series: Linguistics and Intercultural Communication. 2015; 4: 74–81. (In Russian)

105. Tie Y., Rigolo L., Norton I.H. et al. Defining language networks from resting-state fMRI for surgical planning – a feasibility study. Hum. Brain Mapp. 2014; 35 (3): 1018– 1030. https://doi.org/10.1002/hbm.22231

106. Sair H.I., Agarwal S., Pillai J.J. Application of Resting State Functional MR Imaging to Presurgical Mapping: Language Mapping. Neuroimaging Clin. N. Am. 2017; 27 (4): 635–644. https://doi.org/10.1016/j.nic.2017.06.003

107. Rosazza C., Zaca D., Bruzzone M.G. Pre-surgical Brain Mapping: To Rest or Not to Rest? Front. Neurol. 2018; 9: 520. https://doi.org/10.3389/fneur.2018.00520

108. Shirer W.R., Ryali S., Rykhlevskaia E. et al. Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cereb. Cortex. 2012; 22 (1): 158–165. https://doi.org/10.1093/cercor/bhr099

109. Tanaka N., Stufflebeam S.M. Presurgical Mapping of the Language Network Using Resting-state Functional Connectivity. Top. Magn. Reson. Imaging. 2016; 25 (1): 19–24. https://doi.org/10.1097/RMR.0000000000000073

110. Branco P., Seixas D., Deprez S. et al. Resting-State Functional Magnetic Resonance Imaging for Language Preoperative Planning. Front. Hum. Neurosci. 2016; 10: 11. https://doi.org/10.3389/fnhum.2016.00011

111. Sair H.I., Yahyavi-Firouz-Abadi N., Calhoun V.D. et al. Presurgical brain mapping of the language network in patients with brain tumors using resting-state fMRI: Comparison with task fMRI. Hum. Brain Mapp. 2016; 37 (3): 913–923. https://doi.org/10.1002/hbm.23075

112. Branco P., Seixas D., Castro S.L. Mapping language with resting-state functional magnetic resonance imaging: A study on the functional profile of the language network. Hum. Brain Mapp. 2020; 41 (2): 545–560. https://doi.org/10.1002/hbm.24821

113. Rumshiskaya A.D., Panikratova Ya.R., Makovskaya L.A., Vlasova R.M., Mershina E.A., Sinitsyn V.E., Pechenkova E.V. Scope and Limitations of Using Resting State fMRI for Individual Brain Mapping of Motor, Speech and Executive Functions. Cognitive Science in Moscow: New Research. Conference proceedings. / E.V. Pechenkova, M.V. Falik man (eds). Moscow: Buki Vedi, Institute of Practical Psychology and Psychoanalysis, 2017: 311– 316. (In Russian)

114. Hsu A.L., Chen H.S., Hou P. et al. Presurgical resting-state functional MRI language mapping with seed selection guided by regional homogeneity. Magn. Reson. Med. 2020; 84 (1): 375–383. https://doi.org/10.1002/mrm.28107

115. Lemee J.M., Berro D.H., Bernard F. et al. Resting-state functional magnetic resonance imaging versus taskbased activity for language mapping and correlation with perioperative cortical mapping. Brain Behav. 2019; 9 (10): e01362. https://doi.org/10.1002/brb3.1362

116. Park K.Y., Lee J.J., Dierker D. et al. Mapping language function with task-based vs. resting-state functional MRI. PLoS One. 2020; 15 (7): e0236423. https://doi.org/10.1371/journal.pone.0236423

117. Liu H., Stufflebeam S.M., Sepulcre J. et al. Evidence from intrinsic activity that asymmetry of the human brain is controlled by multiple factors. Proc. Natl. Acad. Sci. U.S.A. 2009; 106 (48): 20499–20503. https://doi.org/10.1073/pnas.0908073106

118. Wang D., Buckner R.L., Liu H. Functional specialization in the human brain estimated by intrinsic hemispheric interaction. J. Neurosci. 2014; 34 (37): 12341–12352. https://doi.org/10.1523/JNEUROSCI.0787-14.2014

119. Rolinski R., You X., Gonzalez-Castillo J. et al. Language lateralization from task-based and resting state functional MRI in patients with epilepsy. Hum. Brain Mapp. 2020; 41 (11): 3133–3146. https://doi.org/10.1002/hbm.25003

120. Mbwana J.S., You X., Ailion A. et al. Functional connectivity hemi spheric contrast (FC-HC): A new metric for language mapping. Neuroimage Clin. 2021; 30): 102598. https://doi.org/10.1016/j.nicl.2021.102598

121. Gohel S., Laino M.E., Rajeev-Kumar G. et al. RestingState Functional Connectivity of the Middle Frontal Gyrus Can Predict Language Lateralization in Patients with Brain Tumors. Am. J. Neuroradiol. 2019; 40 (2): 319–325. https://doi.org/10.3174/ajnr.A5932

122. Phillips N.L., Shatil A.S., Go C. et al. Resting-State Functional MRI for Determining Language Lateralization in Children with Drug-Resistant Epilepsy. Am. J. Neuroradiol. 2021; 42 (7): 1299–1304. https://doi.org/10.3174/ajnr.A7110

123. DeSalvo M.N., Tanaka N., Douw L. et al. Resting-State Functional MR Imaging for Determining Language Laterality in Intractable Epilepsy. Radiology. 2016; 281 (1): 264–269. https://doi.org/10.1148/radiol.2016141010

124. Tuncer M.S., Salvati L.F., Grittner U. et al. Towards a tractography-based risk stratification model for language area associated gliomas. Neuroimage Clin. 2021; 29: 102541. https://doi.org/10.1016/j.nicl.2020.102541

125. Ivanova M.V., Isaev D.Y., Dragoy O.V. et al. Diffusiontensor imaging of major white matter tracts and their role in language processing in aphasia. Cortex. 2016; 85: 165–181. https://doi.org/10.1016/j.cortex.2016.04.019

126. Baboyan V., Basilakos A., Yourganov G. et al. Isolating the white matter circuitry of the dorsal language stream: Connectome-Symptom Mapping in stroke induced aphasia. Hum. Brain Mapp. 2021. https://doi.org/10.1002/hbm.25647

127. Duffau H., Herbet G., Moritz-Gasser S. Toward a pluricomponent, multimodal, and dynamic organization of the ventral semantic stream in humans: lessons from stimulation mapping in awake patients. Front. Syst. Neurosci. 2013; 7: 44. https://doi.org/10.3389/fnsys.2013.00044

128. Di Cristofori A., Basso G., de Laurentis C. et al. Perspectives on (A)symmetry of Arcuate Fasciculus. A Short Review About Anatomy, Tractography and TMS for Arcuate Fasciculus Reconstruction in Planning Surgery for Gliomas in Language Areas. Front. Neurol. 2021; 12: 639822. https://doi.org/10.3389/fneur.2021.639822

129. Leclercq D., Duffau H., Delmaire C. et al. Comparison of diffusion tensor imaging tractography of language tracts and intraoperative subcortical stimulations. J. Neurosurg. 2010; 112 (3): 503–511. https://doi.org/10.3171/2009.8.JNS09558

130. Caverzasi E., Hervey-Jumper S.L., Jordan K.M. et al. Identifying preoperative language tracts and predicting postoperative functional recovery using HARDI q-ball fiber tractography in patients with gliomas. J. Neurosurg. 2016; 125 (1): 33–45. https://doi.org/10.3171/2015.6.JNS142203

131. Castellano A., Bello L., Michelozzi C. et al. Role of diffusion tensor magnetic resonance tractography in predicting the extent of resection in glioma surgery. Neuro Oncol. 2012; 14 (2): 192–202. https://doi.org/10.1093/neuonc/nor188

132. Klein A.P., Ulmer J.L., Mueller W.M. et al. DTI for Presurgical Mapping In: Functional Brain Tumor Imaging / Pillai J. – New York: Springer, 2014: 95–109.

133. Farshidfar Z., Faeghi F., Mohseni M. et al. Diffusion tensor tractography in the presurgical assessment of cerebral gliomas. Neuroradiol. J. 2014; 27 (1): 75–84. https://doi.org/10.15274/NRJ-2014-10008


Review

For citations:


Pechenkova E.V., Panikratova Ya.R., Mershina E.A., Vlasova R.M. Presurgical brain mapping of language processing with fMRI: state of the art and tendencies. Medical Visualization. 2022;26(1):48-69. (In Russ.) https://doi.org/10.24835/10.24835/1607-0763-1094

Views: 2521


ISSN 1607-0763 (Print)
ISSN 2408-9516 (Online)